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Abstract

Astronomical images are often plagued by unwanted artifacts that arise from a number of sources including imperfect
optics, faulty image sensors, cosmic ray hits, and even airplanes and artificial satellites. Spurious reflections (known
as “ghosts”) and the scattering of light off the surfaces of a camera and/or telescope are particularly difficult to avoid.
Detecting ghosts and scattered light efficiently in large cosmological surveys that will acquire petabytes of data can
be a daunting task. In this paper, we use data from the Dark Energy Survey to develop, train, and validate a machine
learning model to detect ghosts and scattered light using convolutional neural networks. The model architecture and
training procedure is discussed in detail, and the performance on the training and validation set is presented. Testing
is performed on data and results are compared with those from a ray-tracing algorithm. As a proof of principle, we
have shown that our method is promising for the Rubin Observatory and beyond.

Keywords: Machine Learning, Image Artifacts

1. Introduction1

When the Dark Energy Survey (DES) [1, 2] com-2

pleted its mission in January 2019, it had mapped3

∼5000 square degrees of the southern sky using the 5704

megapixel Dark Energy Camera (DECam) [3] mounted5

on the Blanco 4-m telescope at the Cerro Tololo Inter-6

American Observatory in the Chilean Andes. Over the7

course of 758 nights of data taking spread across 68

years, DES generated a massive ∼2 petabytes of data.9

Due to the nature of the DECam optical systems, the10

DES data are subject to imaging artifacts caused by spu-11

rious reflections (commonly referred to as “ghosts”) and12

scattered light [4] (see Figure 1). While all astronomical13

objects observed by DECam produce ghosts and scat-14

tered light at some level, this study specifically focuses15

on identifying artifacts from bright stars that are promi-16

nent enough to have a negative impact on object detec-17

tion, background estimation, and photometric measure-18

ments. In particular, ghosts/scattered light present a ma-19

jor source of contamination for studies of low-surface-20

brightness galaxies and present a major challenge for21

precision photometry of faint objects [5]. Thus, much22

effort has been devoted to the mitigation of such effects.23

For example, after the DES science verification data set24

was collected, light baffles were installed around all the25

filters to block a scattered-light path. After the first26

year of DES, the cylindrical interior surfaces near the27

optical aperture of the filter changer and shutter were28

painted with a black, anti-reflective paint. This paint re-29

duced the number of possible scattered-light paths and30

improved the quality of subsequent data sets [3, 4]. In31

this article, we seek to identify residual ghosts and scat-32

tered light artifacts in the DES data. We use the term33

“ghosts/scattered light” to broadly refer to all artifacts34

that result from spurious reflections and scattered light35

without distinguishing between the various sources of36

these artifacts.37

Due to the large volume of DES data, the identifi-38

cation of ghosts and scattered light by eye is imprac-39

tical. DES has automated the detection of these ar-40

tifacts through the development of a ray-tracing algo-41

rithm that combines a model of the camera optics, the42

telescope pointing, and the known locations and bright-43

ness of stars to predict the presence and location of44

ghosts/scattered light in an exposure (Section 2). While45
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Figure 1: Example full focal plane DECam images that exhibit ghosts and scattered light artifacts.

this algorithm correctly identifies and localizes a signif-46

icant number of ghosts/scattered light artifacts, it is lim-47

ited by the accuracy of the optical model, the telescope48

telemetry, and external catalogs of bright stars. Because49

the ray-tracing algorithm does not use the DES imag-50

ing data directly, it can miss a substantial number of51

ghosts/scattered light artifacts. There is clearly a need52

for more effective methods to address this problem, es-53

pecially in light of future cosmic surveys like the Rubin54

Observatory Legacy Survey of Space and Time (LSST),55

which will have a field of view three times as large as56

DECam and will acquire ∼20 terabytes of data per night57

(∼60 petabytes over ten years) [6].58

This paper explores the use of modern machine learn-59

ing (ML) methods as a potential solution to the problem60

of efficiently detecting ghosts/scattered light in large op-61

tical imaging surveys. Though ML methods have been62

in use for over half a century [7], we are referring specif-63

ically to the advances in computer vision made in the64

past two decades. These advances were made possible65

by the confluence of several key factors that included66

(1) a deeper understanding of the internal workings of67

the visual cortex [8], (2) the introduction of convolu-68

tional neural networks (CNNs) inspired by the visual69

cortex [9], (3) the development of practical techniques70

to train such networks [10], and (4) the availability of71

vastly increased computational power from devices like72

graphics processing units (GPUs).73

Attempts have been made to apply such ML tech-74

niques to the identification of telescope artifacts. In75

an unpublished report, a CNN was found to signifi-76

cantly outperform a classical ML algorithm (i.e., a sup-77

port vector machine) when both were applied to DES78

images to identify artifacts belonging to 28 different79

classes [11]. However, in this study the CNN showed80

evidence of overfitting, which the authors suggested81

could be mitigated with additional training data. Instead82

of dealing with multiple classes of artifacts at once, an-83

other effort relied on a CNN-based architecture to iden-84

tify artifacts caused by cosmic rays in Hubble Space85

Telescope images [12]. These authors showed that a86

CNN-based approach could provide a significant im-87

provement over the current state-of-the-art method. In88

our work, we focus specifically on ghosts/scattered light89

to demonstrate a proof-of-principle for the viability of90

modern ML techniques for this purpose in large cosmo-91

logical surveys.92

2. Conventional Approach93

The conventional approach to ghosts/scattered light94

artifact identification in DES uses optical ray tracing.95

A standard optical design program is used to perform96

sequential ray tracing to model the performance of the97

telescope and optical corrector. Scattered light comes98

from grazing incidence scatters off of surfaces such as99

the camera filter changer and shutter mechanism [4].100

Ghosts are typically produced by reflections between101

two glass surfaces within the corrector, and for each102

possible combination of surfaces, ghosts were modeled103

by introducing two extra mirrored surfaces at the appro-104

priate positions into the optical design. The model is105

quite accurate at predicting the locations of ghosts, but106

it has difficulty predicting their intensities, since those107

depend on details of reflectivities from antireflection108

coatings and filters, which in turn depend on the inci-109

dence angle and wavelength of each ray. The reflectivi-110

ties were calibrated empirically from ∼100 DES images111

that contained bright stars of known intensity. In mak-112

ing predictions for a validation image, the locations of113
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Figure 2: Architecture of neural network with four convolutional+maxpool layers followed by two fully connected layers.

all known stars were determined in advance, intensities114

for all potential ghosts were estimated, and, if the inten-115

sity for a particular ghost exceeded a preset threshold,116

the area covered by the ghost was estimated by trac-117

ing about 2000 rays sampling the entrance pupil of the118

telescope, and all CCDs illuminated by those rays were119

flagged as being affected.120

While the ray tracing algorithm correctly identifies121

and localizes a significant number of ghosts/scattered122

light artifacts, it is limited by the accuracy of the optical123

model and telescope pointing telemetry. The ray trac-124

ing algorithm also depends on predetermined fluxes of125

bright stars to predict the intensity of ghosts/scattered126

light artifacts. These fluxes are taken from external cat-127

alogs, where they are reported in bands that differ from128

those observed by DES. Furthermore, the fluxes of these129

stars are assumed to be constant in time, while bright130

stars are often variable. Because of these factors, the131

ray tracing algorithm can miss a substantial number of132

ghosts/scattered light artifacts. For this reason, every133

image that was flagged by the ray-tracing program was134

visually inspected, and in some cases, the list of flagged135

CCDs was adjusted by hand.136

3. Machine Learning Approach137

Construction, training, and testing of the CNN-based138

ML model used in this paper were all done using139

the Tensorflow and Keras machine learning frame-140

works [13, 14].141

3.1. Model Architecture142

The choice of network architecture used in this143

work was guided by our ultimate goal of investigat-144

ing whether ML techniques were feasible for detect-145

ing ghosts/scattered light artifacts, and if so, how they146

would compare with the conventional technique based147

on ray tracing. Since the main objective was a proof-of-148

concept demonstration, we opted for a relatively sim-149

ple CNN architecture that: (1) was straightforward to150

implement in a common ML framework, (2) did not151

require significant computing resources to train, and152

(3) had good performance on standard image classifi-153

cation data sets that would carry over to artifact de-154

tection in DES exposures. The CNN architecture we155

settled on was very similar to AlexNet [15], in its use156

of stacked 2D convolutional layers with rectified lin-157

ear unit (ReLU) activation functions that alternate with158

max-pooling layers, and eventually terminated in fully159

connected layers with SoftMax outputs. It differed from160

AlexNet in terms of hyperparameters, such as the num-161

ber of hidden layers, the number of kernels and their162

sizes, stride lengths, and dropout values.163

The detailed design of the CNN we used is shown in164

Figure 2. The network is composed of four 2D convo-165

lutional layers, each followed by a maximum pooling166

layer [9, 15]. The number of output filters in the se-167

quence of four convolutional layers are 16, 32, 32, and168

64, respectively. Filters in all four convolutional layers169

have kernel sizes of 3 × 3, stride lengths of one, and170

use ReLU activation functions. The pool sizes used in171

the pooling layers are 4 × 4 for the first layer and 2 × 2172

for all subsequent layers. Stride lengths for all pooling173
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Figure 3: Evolution of the accuracy (left) and loss (right) as a function of epoch as evaluated on the training and validation samples.

layers correspond to their pool sizes. The final two lay-174

ers of the network, following the fourth pooling layer,175

are fully connected (FC) layers. The first FC layer has176

128 neurons with ReLU activation functions and the last177

FC layer has 2 output neurons using SoftMax activation178

functions. The larger of these two outputs, which sum179

to a value of one, was selected to determine the model180

prediction. “Dropouts” are performed prior to each FC181

layer in which a fraction (0.4 and 0.8 for the first and182

second FC layers, respectively) of the inputs are ran-183

domly ignored. This method lessens the chances of184

overfitting by minimizing co-adaptations between lay-185

ers that do not generalize well to unseen data [16]. The186

total number of parameters in the model is 1,212,578.187

3.2. Training the Model188

The images used for training the model were derived189

from 800 × 723 pixel, 8-bit grayscale images in the190

portable network graphics format, covering the full DE-191

Cam focal plane. These images were produced with the192

STIFF program [17], assuming a power-law intensity193

transfer curve with index γ = 2.2. Minimum and max-194

imum intensity values were set to the 0.005 and 0.98195

percentiles of the pixel value distribution, respectively.196

The training set consisted, initially, of equal portions197

of images that had ghosts/scattered light (positives) and198

images that did not (negatives). The positive sample199

consisted of 2,389 images that the ray-tracing program200

identified as likely to have ghosts/scattered light arti-201

facts and was drawn from the full set of ∼132k images202

from all DES observing periods. After excluding the203

images flagged by ray-tracing program, an equal num-204

ber of images were randomly selected from the remain-205

der of the full data set to form the negative sample of206

the training set.207

Prior to feeding the images to the network, they were208

first downsampled to 400 × 400 pixels, which is the in-209

put size of the first convolutional layer. The pixel values210

in each image were then normalized to a range whose211

minimum and maximum corresponded, respectively, to212

the first quartile Q1(x) and third quartile Q3(x) of the213

full distribution in the image, by multiplying each pixel214

value, xi, by a factor si =
xi−Q1(x)

Q3(x)−Q1(x) . To improve the215

model’s ability to correctly identify images that contain216

ghosts/scattered light artifacts, the training images were217

also randomly flipped either along the horizontal axis by218

reversing the ordering of pixel rows, or along the ver-219

tical axes by reversing the ordering of pixel columns.220

This was done using the ImageDataGenerator class221

in Keras, which does an in-place substitution of the in-222

put images with the flipped versions, without changing223

the total size of the data sample [14].224

3.2.1. Model Training Procedure225

The model was trained using 80% of the sample de-226

scribed in the previous section and the remaining frac-227

tion was set aside for validation. Apart from this train-228

ing/validation sample was a separate test sample used to229

evaluate the model, which is described in Section 3.3.230

Optimal weights for the model were obtained using231

Adam [18], a version of the mini-batch stochastic gra-232

dient method that uses dedicated learning rates for each233

parameter and adapts their values based on their his-234
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tory. The weights were updated iteratively in randomly235

picked batches of 32 images (batch size), completing a236

full pass over the entire sample in one epoch. A total of237

30 training epochs were performed. The loss function238

used was categorical cross-entropy, calculated accord-239

ing to L = −
∑N

i=1
∑M

j=1 yi j · log(pi j), where the index i240

runs over the number of observations, N, and the index j241

is taken over the number of classes, M. pi j is the prob-242

ability and yi j is either 0 or 1, depending on whether243

class j is the correct classification for observation i. In244

our case, we have two classes (M = 2) corresponding to245

whether or not an image contains a ghost/scattered light246

artifact.247

Upon visual examination of the false positives and248

false negatives after training, it was found that some249

images were mislabeled. This was because images la-250

beled as lacking ghosts/scattered light artifacts were ini-251

tially selected based on the ray-tracing program output.252

As it turned out, many “clean” images actually con-253

tained ghosts/scattered light. When images that were254

positively identified by the ray-tracing program were255

inspected, the opposite case was also found to be true256

– some images labeled as having ghosts/scattered light257

did not exhibit detectable artifacts. Therefore, several258

iterations were required in order to fix the mislabeled259

images and repeat the 30-epoch training process.260

3.2.2. Training and Validation Results261

The final results of training are shown in Figures 3,262

4, and 5. The two panels in Figure 3 show the evolution263

of the training accuracy (left) and loss (right) over the264

epochs. The validation curves follow the training curves265

closely, indicating no overfitting. Accuracies of over266

94% are achieved on both training and validation sets at267

the end of 30 epochs.268

Figure 4 plots the receiver operating characteristic269

curve (ROC) for the trained model, showing the true270

postive rate versus the false positive rate. The curves re-271

sulting from the application of this model to the training272

(light blue dotted line) and validation (solid blue line)273

samples are shown separately. The area under the ROC274

curve (AUC) for the validation sample is 0.987, indi-275

cating good separation between the two classes of im-276

ages. For comparison, the diagonal green dash-dotted277

line shows the case when a model has absolutely no dis-278

criminating power between classes where AUC=0.5.279

Figures 5a and 5b plot the confusion matrices for the280

training and validation samples, respectively. In each281

matrix, the values in the first row represent the number282

of true negatives in the first column and the number of283

false positives in the second column. The values in the284

second row represent the number of false negatives in285

the first column and the number of true positives in the286

second column.287

3.3. Evaluating the Model288

The validation set was not used directly to train the289

model, however, it served as an early indicator of model290

performance in the training process. In this respect, it291

could have influenced the model and hyperparameter292

choices. The performance of the fully trained model293

was therefore evaluated in an unbiased way using an294

independent test data sample. This sample was con-295

structed by visually selecting an equal number of im-296

ages containing ghosts/scattered light artifacts and those297

without them, and labeling them according to their true298

class. It consisted of 1,761 DECam images spread299

across all DES data taking periods. It also excluded300

all the images used for training and validation, and was301

∼37% of that sample in size. The fully trained model302

was applied to this sample to predict which class they303

belonged to. The ROC curve for the test data sample304

is represented by the dashed red line in Figure 4 with305

AUC=0.917, indicating good discrimination between306

the two classes. From the confusion matrix shown in307

Figure 5c, one calculates accuracy = TP+TN
Total = 0.861,308

precision = p = TP
TP+FP = 0.837, recall = r = TP

TP+FN =309

0.897, and F1 = 2 · p·r
p+r = 0.866, where TP, FP, TN, and310

FN are, respectively, the number of true positives, false311

positives, true negatives and false negatives. These re-312

sults are summarized in Table 1 together with those for313

the training and validation samples.314

Typical examples of misclassified images from the315

test sample, in the form of false positives and false neg-316

atives, are shown in Figures 6 and 7, respectively. Al-317

though the images in the first class of false positives318

represented by Figures 6a–6c do not bear an obvious re-319

semblance to those containing ghosting/scattered light320

artifacts, they all exhibit poor data quality from nearly a321

magnitude of extinction due to clouds that may be con-322

fusing the CNN. These images do not pass the high-323

level DES data quality criteria. The second class of324

false positives contain objects that exhibit features sim-325

ilar to those found in ghosting artifacts (Figures 6d–6f)326

and scattered light artifacts (Figures 6g & 6h), making327

them intuitively easier to appreciate. The third class of328

false positives, represented by Figure 6i, are in some329

sense true positives, because they contain faint artifacts330

close to the human detection threshold. In this image,331

there is a ghost artifact faintly visible in the 4th and 5th332

columns from the left, in the two middle rows of CCDs.333

The false negatives in Figure 7 are easier to understand334

because they all contain ghost artifacts that are not too335
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Figure 4: ROC curves and the associated areas under the ROC curves (AUCs) are shown separately for the training, validation, and independent
test samples. The green dash-dotted line represents the reference case of no discriminating power (AUC=0.5).

(a) (b) (c)

Figure 5: The confusion matrices are shown separately for the (a) training, (b) validation, and (c) independent test samples. In each matrix, the
number of true negatives and positives are shown, respectively, in the upper left and right boxes, while the number of false positives and negatives
are shown, respectively, in the upper right and lower left boxes.
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Performance Summary
Sample Accuracy Precision Recall AUC

training 0.963 0.959 0.967 0.990
validation 0.944 0.927 0.959 0.987

test 0.861 0.837 0.897 0.917

Table 1: Summary of performance metrics for each sample. Accuracy, precision, and recall are calculated as described in Section 3.3 using the
values in Figure 5. The AUCs are the areas under the ROC curves in Figure 4.

difficult to see (their locations are described in the figure336

caption).337

Our application involves a large data set where im-338

ages with ghosts/scattered light constitute a relatively339

small fraction of the entire sample. False negatives carry340

a high cost due to their detrimental effects on astronom-341

ical measurement and the difficulty of manual identifi-342

cation in a data set of this size. On the other hand, false343

positives are less of a problem since they are easier to344

identify from the smaller sample predicted by the model345

to be ghosts/scattered light. Our model’s true positive346

rate or recall of ∼90% shows it is able to identify a347

significant fraction of all images with ghosts/scattered348

light, and its precision of ∼84% indicates that false pos-349

itives are also kept under control, both of which are fa-350

vorable characteristics for this application. As indicated351

by the AUC, our model performs better on the training352

and validation set than on the test set. This may be an353

indication of biases introduced in the construction of the354

former set, which is based on images identified by the355

ray-tracing program.356

4. Applying the Trained Model on DES Data and357

Comparing with the Traditional Method358

The CNN trained according to the details described359

in Section 3.2 was used to perform inference on the360

DES Year-5 data set consisting of 23,755 full focal361

plane DECam images with exposure numbers rang-362

ing from 666747 to 724364, which were prepared us-363

ing the procedure described in Section 3.2. This set364

also included the Year-5 images that were used in the365

training+validation and testing stages. For each im-366

age, the model was used to predict whether it contained367

ghosts/scattered light or whether it was free from such368

artifacts. The model identified 3,285 images as posi-369

tives, containing ghosts/scattered light artifacts. Sev-370

eral examples of these images are shown in Figure 8.371

Only 716 images in this set of positives were false372

positives, exhibiting nearly imperceptible or no sign of373

ghosts/scattered light artifacts. The precision achieved374

was therefore p = 2569/3285 = 0.782.375

For comparison, the ray-tracing program described in376

Section 2 classified 259 DES Year-5 images as contain-377

ing artifacts. Out of these, 241 were in common with378

the set of positives identified by the ML model, and all379

of the images in this overlap region were true positives.380

The remaining 18 that were positively classified only by381

the ray-tracing program were all true positives except382

for 8. The precision achieved by the ray tracing model383

was therefore p = 241+10
259 = 0.969.384

The difference in precision from the two methods385

may be due to the more limited range of image types386

dealt with by the ray-tracing program, and the issue387

raised in Section 3.3 about the training and validation388

set being based on the images identified by that pro-389

gram.390

5. Computer Resource Utilization391

The conventional ray tracing algorithm takes on the392

order of a few ms per image for actual ray tracing. Ad-393

ditional time is spent querying the bright star catalog394

around each exposure as a pre-processing step. This al-395

gorithm was run on a yearly basis as input to the DES396

data processing.397

For the CNN-based approach, training the model398

over 30 epochs using the procedure described in Sec-399

tion 3.2.1 on a laptop with an Intel Xeon E-2176M CPU,400

32GB RAM, and a mid-range 4GB Nvidia Quadro401

P2000 Mobile GPU took 8.8 min (18 s/epoch) to com-402

plete. Utilizing the 16GB Nvidia P100 GPUs available403

in the Google Cloud Colaboratory Jupyter notebook en-404

vironment [19], reduces the training time by a factor of405

4× (4.4 s/epoch).406

The process of performing inference with the CNN407

on the 23,755 image DES Year-5 data set described408

in Section 4 took 50 s (2 ms/image) on the Quadro-409

equipped laptop described above. Such short inference410

times are indeed promising for real-time artifact identi-411

fication on future large-scale cosmic surveys, especially412

since the network model has not even been optimized413

for speed yet. Furthermore, there now exist practical414
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Example false positives found by the trained model in the test set described in Section 3.3. The exposures shown in panels (a), (b), and
(c) have poor data quality due to heavy cloud cover which contributes to misclassification by the CNN. The barred spiral NGC 1365 in the Fornax
galaxy cluster (d), Galactic cirrus (e), and the Omega Centauri globular cluster in (f), exhibit features similar to those found in ghosting artifacts.
The faint resolved stars in the periphery of the LMC in (g), and the artificial earth-orbiting satellite track in (h), have features found in scattered
light artifacts. There is a barely visible ghost artifact in columns 4 & 5 of the middle two rows of CCDs in (i).
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(a) (b) (c)

Figure 7: Selected examples of false negatives found by the trained model in the test set described in 3.3. Faint ghosts/scattered light artifacts are
visible in the upper left corner of (a), rightmost column CCD in the 5th row from the top of (b), and rightmost column CCDs in the 8th and 9th
rows from the top of (c).

high-level synthesis tools that can implement these net-415

work models on FPGA hardware for critical real-time416

applications [20].417

6. Conclusion418

We have successfully applied a machine learn-419

ing based method to identify DES images containing420

ghosts/scattered light artifacts. This method positively421

identified ∼97% of all images that had been previously422

identified as containing artifacts by a traditional ray-423

tracing method. Overall, it also identified ∼10× more424

images with actual artifacts, with a precision of ∼78%.425

This serves as a proof-of-principle demonstrating the ef-426

fectiveness of using modern ML methods in identifying427

ghosts/scattered light in optical telescope images from a428

cosmic survey. It lays the foundation for possible future429

refinements. The scope of this work was limited to de-430

tecting the presence of these artifacts in an image with-431

out identifying their location within the image. In future432

work, we will take advantage of recent developments in433

object detection and semantic segmentation to expand434

the capability of our method to include the identifica-435

tion of the individual pixels associated with each arti-436

fact [21]. Such enhancements, coupled with the results437

presented in this work, will benefit future cosmic sur-438

veys like the LSST, which will be faced with the chal-439

lenge of even larger data sets.440
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(a) (b)

(c) (d)

(e) (f)

Figure 8: The images above are examples of DES Year 5 images predicted by the CNN described in this paper to exhibit ghosts/scattered light
artifacts, but which were not identified by the ray-tracing algorithm as such. Figures (a) to (d) show examples that have actual artifacts, representing
true positives. Figures (e) and (f) are examples of the ∼23% described in the text that either do not exhibit artifacts or have negligible levels,
representing false positives.

10



the University of Illinois at Urbana-Champaign, the In-477
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