
High-level analysis of 
changes indicated by the 

recent workshop at Fermilab.
Iteration one. – Dlp,

Article I. Summary:

This note is a high-level analysis of the changes to the “wrappers” 
recommended by the recent two day workshop held at Fermilab. 
Changes are needed to accommodate the new file tree, unique file 
naming, naming files to improve operability, and to give the system an 
controllable architecture which is needed to enable data management, 
and to make the system modular to cope with future changes.

We identify changes and find there is a way to incorporate the changes 
to the system in a way that allows gradual change.

Article II. Review of salient aspects of 
framework:

We can think of the processing system as having three components, 
1) A central, unified data management and job management 

framework.
2) Some number of science codes, not all of which community code, 

that are not customized to fit into the data management system
3) “wrappers” – code which adapt science (and possibly other) codes 

to the framework.

This note focuses on a specification on the data interfaces between the 
framework and the wrappers.  

DESDM framework is based on the exchange of data to and from 
wrappers via  files and database interactions 

DESDM provides a batch computing environment that is managed by the 
framework and runs science codes via their wrappers.   The framework 
makes input files available to the codes. By convention 



• "data and calibrations" are provided in a “file management 
system”

• Executable codes are provided by a “code management system”.
• Configuration files are managed as code
• DB-resident data may be presented and manipulated by science 

codes.

In addition to supporting the science codes, the DESDM needs to support 
efficient operations over the lifetime of the survey.  This means that the 
interface between wrappers and the framework must support the 
underlying evolution of DESDM.

Article III.Wrappers

A wrapper is a set of codes whose role includes adapting science code 
so that it interacts properly with the framework. A wrapper needs to tell 
us about the things it knows (but the framework does not know).

In particular, 
• Wrappers shall emit information on the subset of data offered to 

them by the framework was actually used by the computation.
• Wrappers ensure that new files are declared to the system 

according to the rules of the framework.
• Wrappers emit detailed information about the transformations 

used on the data. e.g. what was the exact call to the wrapped 
science software?

• Wrapper must inform us about database tables read or updated.

There are other duties, which include: emitting Quality controls, and 
telling the framework to "halt".  These are not discussed here.

DESDM requires data, calibration, configuration, and code provenance. 
While it is good to insert provenance information in file headers, DESDM 
needs the data to also be database resident. This is as much for data 
management operations, as it is for the scientific consumer of the data. 
Example use cases in operations are:

• Identify all data affected by a calibration.
• Identify all data affected by a version of a science code.
• Identify all data affected by a particular exposure.
• Identify all z-band data affected by a configuration file.
• Identify all data affected by a CCD over a certain date range.



• Identify all data processed with a command line switch.
• Identify which files have been modified in a processing step.

Section 1. Files: 

For operations, DESDM locates files by recording a partial path name 
and basename for a file.  Files retain this name when some (or all) of the 
file tree is present under a “rooted area” on a file system.  However, the 
last portion of the file name is allowed to vary. This is to accommodate 
lossy and lossless compression, the idea being that such files contain 
equivalent information. The current framework supports fpack and gzip 
compression.  Moreover, the pathnames are directly related to abstract 
properties of the files: “red” encodes “reduced” fileclass, etc.  This 
linking fixes the file system to a structure, and makes it impossible to 
change as operational problems arise: e.g limiting the number of files in 
a directory, or merely navigating the system.

When a science code runs, the framework arranges for files to be 
provided to the wrapper. A “.des” file contains template commands to 
call a wrapper. The framework fills out the template at run-time. Part of 
the template language specifies queries that will identify the files 
required for this run of the wrapper.   The framework runs these queries, 
and arranges for the files to be staged to a DES file tree that is available 
to the science code. The framework builds lists containing the file 
names, (and any other attributes that can be obtained from the 
database).  These lists are passed to the wrapper.

As the wrapper and science codes run, new files are deposited into the 
DES file tree.

In the “as-is” system files in the tree may be “edited” typically by 
overwriting a file with a new file of an equivalent name. 

In the as-is system, the new files are discovered after all computations in 
a “block” have finished.  The framework runs codes which discover new 
files in a run, then applies > 4000 lines of business logic to find 
provenance relationships, extract and record meta-data and record 
these files in a replica catalog (the location table).   This operation is 
also a considerable performance bottleneck. This bottleneck is not 
intrinsic to the problem, it is intrinsic to the constraints of the as-is 
system.

Section 2. Databases:



Basic information, such as “what database tables are read or updated by 
which programs” is lacking, and obtainable only by code reading or 
reading longs.

Section 3. Programs

The current system can record the invocation of the wrapper, but cannot 
record the invocation of the (community) science code. It’s this 
invocation that is of interest to the DES community.

Section 4. Summary of concerns

• The system ties abstract qualities to concrete path components. 
This makes it impossible to address certain critical problems in the 
file tree.

• The Framework-resident code must figure out the parent-child 
relationships, extract meta-data, etc. This results in a large 
module with tragic coupling and cohesion characteristics. 
Maintenance of this code is at risk, and changes are slow enough 
that files are buried in unnatural places, (Likely obfuscating their 
abstract characteristics).  

• File ingest is done when a block is done, and in particular is not 
done as a job finishes, so ingest information is not available for 
end-of-job processing by  the framework.

• We need to understand in some routine way, what codes access 
what tables in the database.

• We need to capture the invocations of the community codes, not 
just the  invocations of the wrappers.

Article IV. What provenance/metadata 
specification would make this better?

Disregarding whether the project could afford to implement this, what 
are the principles that should be pursed when investigating an 
alternative?

Section 1. Principles

Principle Addresses concern
The wrapper knows best – the Overly coupled, non-coherent 



wrapper knows the science, 
and actually knows what data 
was selected from the data 
made available to it  and know 
what configuration files were 
uses. (Recall that the 
configuration files are 
managed as code.) 
The wrapper knows which 
codes it invoked, and how they 
were invoked.

software results in not keeping 
up with change requests, and 
de-facto mis-application of the 
existing system. 

Address scaling and lack of 
performance of current file 
ingest. 

It’s settled computer science 
that Provenance for files can 
be transmitted as a set of 3-
tuples, generically of the form 
(subject, relationship, object). 
This idea should be 
incorporated into the interface

A general interface allows for 
the system to be completed, 
and for a regular underlying 
implementation. 

Currently, multiple inputs are 
handled only as special cases; 
not all cases are covered.   

Allows that capture of 
configuration and code 
provenance can be symmetric 
to all other provenance 
collection.

Wrappers need to record 
provenance information in a 
way that’s accessible to the 
framework. Recording must 
happen  as the wrapper causes 
files to be moved or created or 
edited or replaced into the file 
management system file tree. 
Meta-data elements are 
recorded at the same time as 
provenance.

The framework cannot 
understand what files in the 
tree are from which unit of 
computation. (e.g job) in real 
time, as unit of computation 
(or scale)

The framework needs 
information about files.

Meta-data elements are 
treated separately from path 
names.

The current directory is 
inflexible, as path names are 
tied to certain, specific  meta-
data.  We are unable to 
address  present and future 
difficulties in the file tree.

Wrappers are presented with Compression is a function of 



the uncompressed form of the 
data.  If science-sensitive 
parameters are needed to 
lossy-compress the data, the 
wrapper transmits that 
information to the framework 
as meta-data. (needs 
thought?) 

the framework, not science 
codes.

Other metadata  is understood 
by the wrappers

File ingest needs to open most 
files, extract meta data from 
each file, and map the meta-
data to the columns one of the 
following tables:  IMAGE, 
SOURCE, COADD WL, SN, and 
CATALOG. Coupling and 
cohesion disease is rampant. 
The wrapper is in the best 
position to make this mapping

Section 2. Provenance Specifications
The basic notion for provenance is inspired by RDF -- provenance is 
declared to the system in (subject, relationship, object) triples.  Subjects 
and objects are names of things in or used by DESDM.  Relationships 
form a finite vocabulary of terms that relate these things together.   

In full blown RDF  these terms are qualified with a URL-like syntax, this is 
to prevent name collisions when people develop things independently, 
We do not need this for DESDM. (but can generate this if required, and in 
particular  can dump our provenance to already-developed full blown 
provenance engine where we can  get answers to questions like the 
ones in the use cases, above. 

The framework is in a position to collect further provenance, which 
might include useful information about the detailed configuration of the 
software sandbox, and the computing platform used, 

While further research is warranted,  We are unaware of any standards 
for astronomy production that we can conform to (further research is 
warranted). Our strawman for the as-is system is as follows.



Section 3. Subjects and Objects.
Its possible to develop a rich and increasingly fine grained granularity of 
specification.   Remember that this method of specification is flexible, 
and that we should be guided by the fact that we currently have broken 
model and that a coarse grained system would gain us a lot. We also 
need to be conscious of the intellectual burden placed on the 
(distributed) set of people who maintain wrappers. We have to present 
the simplest thing that is not too simple, and shield wrapper writers from 
any work that is best done in the framework.

Here is a strawman of the things a wrapper is in the best position to 
acquire data about, and also satisfy our immediate requirements:
 

Thing How named in 
API
(Proposed)

Comment

File in file 
management 
system

Canonical 
name

What we consider to 
be “data’; covers 
files not well 
treated in the 
current system, like 
flats bias calibration 
frames Includes 
things like input and 
output lists passed 
to science 
programs. 

Config file from 
source tree

Basename of 
the file in 
distribution.

Allows us to find 
data affected by a 
specific 
configuration file.

Program in 
source tree

Basename of 
file in 
distribution.

Name the program 
that converted 
inputs to provides 
the outputs.

Commandline The text of the 
full 
commandline 
used to invoke 
a science code.

Name the command 
line used to invoke 
the science code.

Database table Name of table. Allows u to know 
what code touched 
what table, 
something that is 
not under control 



today

Relationships:
These are the relationship that a wrapper needs to concern itself about.
  
Relationship Valid Subjects Valid Objects Comment
Read Program File in the fie 

management 
system

Program read 
file in the file 
management 
system

Produced Program File in file 
management 
System

Program made 
a file with a 
new canonical 
name. 

Edited Program File in file 
management 
system

Program 
altered or 
replaced a 
existing file in 
the file 
management 
sistem. 

Was-
Configured

Program Configuration 
file in the 
source kit

File was used 
as 
configuration 
for program.

Was-
Invoked_as

Program Commandline Commandline 
used to invoke 
program

Inserted_into Program Database 
table

Program 
added one or 
more rows to 
named table

Updated_table Program Database 
table

Program 
edited one or 
more rows to 
table

 

Section 4. Other Meta-Data
For each FITS file, the current system extracts and maps data from the 
header into a generic table that most closely matches the FITS file.  This 
mapping is best performed by the wrapper, which knows the type of the 
file, and knows how to transform the data to the form required by the 



table. This meta-data is held in the IMAGE, COADD, CATALOG, WL, SN, 
and EXPOSURE tables.

Other meta-data  is currently hard-wired into the file paths. If we wish to 
decouple paths from this data, the meta-data must be supplied by 
external API as well. If we have a gradual change in the framework, 
some of this meta-data is needed to form path-names in the way the 
current system works, and so the framework can marshall data 
computed in the new framework and provide it to  “old style” wrappers 
-- so that change can be incremental, and old wrappers can work until 
they are re-written. 

This meta-data that is currently related to the “path names’or “file 
names” is  in the LOCATION table. The relevant sub-set is

column_name Comments
FILECLASS Describes DES fileclasses
FILETYPE Describes DESDM filetypes
RUN DES pipeline run identifier.  Of the form: 

CCYYMMDDHHMMSS_NITE
NITE Observing nite data were taken
BAND Filter used in exposure:  g,r,i,z,Y
TILENAME DES Tilename 
EXPOSURENAME Filename of exposure image current image was 

derived from.  The exposure is the MEF fits file 
generated at the telescope.

CCD,NUMBER CCD number of current image or catalog
PROJECT Project file was taken for:  DES, BCS, SCS, etc...

Article V. What about other issues?

Section 1. Looping in wrappers
There are a number of concerns:

• Log files and other forensic data are more complex, since they are 
large and record information about many program invocations. 
Trolling these files is arduous, and having multiple invocations 
makes the work harder. So forensics is harder than need be.

• It that it is unclear what happens when a program fails on some 
processing attempts, but not others.

These factors indicate that there is a trade off of computational 
efficiency, compared to operability that needs to be further studied. This 
proposal could be adapted to w looping or loop-less system.



Section 2. Reaction to partial errors, and data 
quality:

The existing framework is used at various grain-sizes.  Core data 
products use many blocks and many modules.  Super Nova processing 
uses one block and one module and one wrapper invocation. E.g. the 
framework invokes a independtly constructed workflow system designed 
by the super nova team.

So the interesting case is “what role does the framework have to offer 
when modules and blocks are chained together?”   

In the as-is system, essential meta-data is placed in one of a small 
number of tables, eg. source, catalog, image, etc.  These tables are 
available to the queries which are executed by the framework to 
marshall files for a block. It is worth noting that the WL group noted that 
some data may be suitable for many survey purposes, but not suitable 
for WL.  So there are real issues, we may have co-add runs for WL, and 
other runs  for the general collaboration, where the salient difference is 
the suitability of the input images.

Exposing the writing of this meta-data to the wrappers allows 
for quality data to be interested into these tables, and used by 
orchestration queries.  However fitting arbitrary quality data 
into a static table seems problematic, and needs to be 
investigated. 
Adding a (<file>, has_quality, <quality-literal>) tuple to the 
provenance system,
Allowing wrappers to provide this data and supporting queries 
against this information might provide a better hook. 

Article VI.How can we move to a new system, 
given it is so late?

The strategy that comes to mind is incremental change. What are the 
hooks for incremental change? They seem to be:

• Directories above, and including file type are currently controlled 
by the framework, and do not affect current wrappers.

• If we proceed in an upstream to downstream way, as long as we 
collect the meta-data in the location table, we can make files 
appear with the pathnames used by old wrappers.

• We can neuter out specific kinds of files in file-ingest, as they are 
entered in the new framework.



This suggests that migration is feasible if we proceed in an upstream to 
downstream manner, where we modify wrappers, orchestration and 
migrate to the new ingest framework.


	Article I. Summary:
	Article II. Review of salient aspects of framework:
	Article III. Wrappers
	Section 1. Files: 
	Section 2. Databases:
	Section 3. Programs
	Section 4. Summary of concerns

	Article IV. What provenance/metadata specification would make this better?
	Section 1. Principles
	Section 2. Provenance Specifications
	Section 3. Subjects and Objects.
	Relationships:

	Section 4. Other Meta-Data

	Article V. What about other issues?
	Section 1. Looping in wrappers
	Section 2. Reaction to partial errors, and data quality:

	Article VI. How can we move to a new system, given it is so late?

