DESDM Workflow Discussion Meeting
February 13/14 2012

Goals (defined by Brian)

A. Understand, in general terms, what the DESDM project is trying
to do (process data from the DES experiment in a timely and
robust, reliable fashion).

B. Understand and comment on the '‘components' of the DESDM system, including:
1. software source control and version tagging (SVN)
2. software executable product distribution (EUPS)
3. managing changes to the science software modules from the developers
4. input and output file namespace, file sizes, directory structure(s)
5. file movement (i.e. move to XSEDE/OSG/FermiGrid for processing, then move back
results)
6. database interactions (both operations database and science result database)
7. processing scripts including:
layers of scripting, including scripts which generate other scripts
tunable parameter files and command line arguments
tracking provenance information on processing scripts and arguments
logging of intermediate and final results
error handling (should scripts be restartable or start over?)
reproducing results by rerunning scripts - avoiding namespace collisions
8. desired hardware platforms for production:
XSEDE
Fermigrid cluster with central 'head node'
OSG cluster with independent nodes
Stand alone Linux box or small cluster
9. desired database support:
central Oracle database at NCSA
postgres database at FNAL, NOAO, NCSA or 'local to processing cluster'
limited 'flat file option' for logging or holding some outputs during
testing/development or when link to database is down.
10. schedule: Engineering Data flows will flow from camera Aug 2012.
This drives DESDM schedule -- need to be able to push data through
'calibration/prep/first cut' blocks (see gruendl.pdf) by Aug 2012.
Future blocks, i.e. 'Coadd' block, needed by Sep 2012 in some form, can evolve.
CP delivery also needed by summer 2012 -- have option to deliver with 'existing
workflow".

C. Brainstorm and Deliver suggestions based on your experience on getting to an exposure

based processing system in the next few months.

Agenda

9am Introduction (Yanny)
short review of the DES project, with emphasis on
the DECAM data structure, size and processing turnaround requirements,
also the schedule with deadlines for delivery.
9:15am Overview of existing DESDM workflow, orchestration, DM system
(Don or NCSA rep)
10am Guidelines and concepts from similar systems:
SAM/DO (W. Merritt, J. Kowalkowski and/or L. Buckley-Geer)
SDSS (Yanny)
11am Begin discussion of 'separation of components' (Yanny or LBG lead)
i.e. how to divide the work so that workflow scripts are not mixed with data movement

which is not mixed with database interaction
12-1pm Lunch in Fermi cafeteria

1pm -2:30pm presentations by Tech-X team:
Dataflow Processing Engine Based on Data Distribution Service
(N. Wang)

Discussion with Sveta, Nanbor Wang, Mark Green
2:30pm DESDM exposure based processing 'potential show stoppers' discussion (Gower,
Daues, Slyz lead)

We wish to move to a 'exposure-by-exposure' processing mode for doing the single
epoch (First Cut) processing block. Previously we operated in an 'night-by-night processing
mode, which meant: deal with 300 exposures at once. Will this work in an efficient way on
XSEDE and OSG platforms with relatively little differences in the data movement flow? We
should also understand how 'pre-burner' blocks, like 'calibration computations and staging

work in an exposure-by-exposure mode.

Tuesday Feb 14, 2012

Room: Fermilab Wilson Hall, 1 North room (1st floor Fermilab, West side,
north of large 1W lecture hall)
9a-12noon
Software version control
Product building executable distribution
Provenance tracking
dealing with the "long path" problem
Real-time Status Monitoring (what step exposure N at now?)
Error handling (what to do if a job dies on a far-away node)

Quality Checks (after every sub-step, or only at the end of blocks?)
12-1pm Lunch in Fermi cafeteria

lpm
Discussion of Other blocks besides 'First cut'
(i.e. How to do Coadd on OSG node with many GB staging
required)
Resources and schedule: Do we have a clear path forward
Who can do the work
On what time line

These are the notes taken at the meeting. | have attempted to reorganize them into topics and
have removed the attribution. The meeting talks are posted at http://des-
docdb.fnal.gov:8080/cgi-bin/DisplayMeeting?conferenceid=1017

Introduction

Brian Yanny presented an overview of the data processing flow (http://des-
docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=6164)

The basic unit of data taking is 1 camera exposure, size ~ 1GB (uncompressed); camera
takes ~ 300 science exposures plus ~ 50 calibration exposures (same size) per night

We take about 10 images per calibration type (flat, sky flat, bias); and average those to
one image that is used to calibrate a full night (or longer) of data. Note that flats and sky flats
are 10 per filter.

We focused on the processing block called Single Epoch First Cut and on the blocks that
pre-process the calibration data.

Single epoch pipeline hardware requirements:

* One 1-GB science image needs a node with 2-3 GB RAM, 20 GB scratch space

* 3-4 GB of calibration images are needed per night

* CPU several (4-5) hours per exposure for full processing on one standard Linux box
(shorter for simplified versions like supernova or community pipeline)

* Ingest to DB catalog is required at the end of exposure processing (not during? Question
to be answered.)

Looking further at crosstalk module inside Single Epoch processing

* Breaks a single exposure into 62 pieces
* Uses a previously generated crosstalk matrix to correct the images. This has to be
applied to both science images and calibrations images.

Note: Filenames in system are NOT unique. Full path is required to specify file. Need to
change this.

Note: The structure that passes flags into science codes does not fully/correctly capture
provenance because the expansion occurs below the orchestration layer. Need to correct
this.

Single epoch processing requirement:

One night’s data must be completed within 24 hours. Given CPU time above, implies need
at least x300 nodes to meet this spec.

Data inflow: Exposures are sent from CTIO to NCSA throughout the night. Final image probably
arrives 3-5 hours after end of data taking.

DESDM Components - Don Petravick

Don presented a series of slides that addressed the questions that Brian posed (http://des-
docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=6166)

The software build process is chaotic:

* External packages are in ups

* DESDM code is NOT!

* Not at all modular. Uses build ‘sandbox’, particular to an XSEDE node. Hard to
have enough sandboxes. It is not possible to pick different versions of a given
module at run time.

* No continuous nightly build process.

* GSN process IS the testing. Cycle is about a month.

Uses a file tree as a substitute for real unique file names. Transports subsets of tree to
processing nodes, adds new files, copies back. Tree structure is part of wrapper and code. The
directory structure is limited to a depth of 5 due to the design of the replica catalog. It is
extremely hard to add a new fileclass (e.g., src,red,cal) so all new reduced output such as
Supernova or Weak Lensing get dumped into the red fileclass.

Question: How are file permissions handled? Uses single unix group, all production users in
same group.

Not all intermediate files not currently kept, some steps overwrite their inputs. Need to keep
more, for restarts and debugging.

Copying across input files occurs at the beginning of a ‘block’, may occur between block steps if
files are not available on that node.

Many DB interactions — see Don’s slide for list. Would like to factor system to put DB heavy
modules on NCSA machines — but constrained by policy?

Scripting and configuration

Orchestration reads .DES config files. These are not the complete configuration info, many
command line options are set in the wrappers and do not get exposed to the configuration
layer.

Wrappers may be in either C or Perl.
Science parameters are managed in SVN.

Provenance captured in FITS header (NOT in DB?) and in file names/file tree. The current
system assumes that one input maps to one output, many-to-many are handled as exceptions.
The file ingest step (which is just ingesting the file metadata, not the files themselves) is done
by 1200 lines of Perl script. No calibration provenance in DB. Needed functionality (e.g. flag
data processing with a questionable calibration file) is not possible (at least with finite effort)
within the existing system. File ingest takes 0.5 — 2 hours on a Lustre file system (used on
XSEDE systems). The file ingest step needs to read the headers to get information that is put
into the DB. Because of the typical buffer sizes on the Lustre file system it ends up reading the
whole file in just to get a few words of header information. File ingest must be run even on
failed processing in order to be able to retrieve files at all because DB needs to know in order to
use the archive copy tools.

Normal automated running does not provide intermediate files. Debugging currently done with
adding custom code. Failure analysis is done by diving into log files. Heavy human intervention
is required to bypass errors. No central error logging — which is made harder by the fact that we
don’t control many of the codes that we run.

DB is ORACLE — that will not change.
Converting to Python — can be done piecemeal.

NCSA DB can support production from Munich as well and presumably FermiGrid also (the
proposed FNAL DB will be a copy of the Science DB only and so any processing that ran on
FermiGrid would access the NCSA database).

There are three main areas that need attention:

1) orchestration

2) applications - there are three aspects here

a) wrappers - there are three types of these, all sit as front-ends to the science codes
1) simple (just run the application after mapping arguments)
2) science heuristic containing (run the application until a good parameter is found)
3) loop containing (do part of the orchestration / framework function)

b) science code - there are two basic types

1) SExtractor-like programs (well established in the astro community)
2) DES scientist developed
3) release / build system

We all discussed obtaining some system trace information from various components within the
system to help understand how they interact with file system and database resources. No trace
information was available before or during the workshop.

| did not receive access to DES source unless very late in the workshop. Liz provided a brief
walkthrough of code and workflow blocks (with commentary) that was very valuable and
helped us understand the current state and situation a bit better. This was at the last part of
the workshop.

The current system appears to be organized in an inefficient manner. File system interactions
look to be taking a substantial amount of processing time, along with the scan and upload of
relevant metadata from raw and derived FITS files.

The single exposure processing model is likely going to improve the situation.

Allowing applications to operate within a local filesystem or within a RAM disk or similar
structure could be very helpful.

With regards to the directory and file structure, it seems to me that a few requirements and
relevant bits of information came up.

1) the DES community really wants unique file names

2) looks like there is three components that make up a unique file name:
a) exposure
b) run or pass
c) workflow step

The directory structure above these named files should likely be built to suite a particular
processing environment or application. For example, it might be very reasonable to build an
exposure-based directory sandbox for application to use on a local filesystem during
processing. When the processing is complete, the results are moved into a differently
organized directory structure in the global file system.

Guidelines for new system

The proposal is to move toward a model which processes a single exposure rather than a single
night. Due to the design of the current workflow this will require a re-implementation of the
existing Orchestration layer, configuration layer and wrapper scripts.

Requirements (high level)

* It must preserve science results
* |t must work for CP as well

* Must work in time for first data taking (how firm is that requirement, given current
system works at some level?)

* Must be able to reproduce a processing run with same code and input data and params

* Must work on both XSEDE and OSG style systems

* Must reduce effort required to debug and restart pipelines

Needed to get to requirements (high level)

* Add provenance model

* Reduce global file access bottleneck

* Add parameter management system, with versioning

* Add message logging system

* Uniform wrapper interface — disentangle DB/file access from codes?
* Restructure build process to allow clear versioning of code

More info needed

* Are there any *science* constraints preventing moving to single exposure model? This is
answered by Michelle — no, just efficiency problems in current structure.

* Need full set of use cases for provenance

* Need complete picture of required DB access in current system, further DB access (if
any) driven by provenance or error handling requirements

We should work toward a system with:

1. One layer of wrappers
2. Astandard workflow API

Wrappers should not do things like looping (except if it's an atomic operation)
Wrappers should not do things like 'mkdir' inside of them

We did a walkthrough of existing scripts/wrappers, i.e. runSextractor is quite complex and does
a lot of things wrappers don't traditionally do.

There are some fundamental issues that need to be resolved before this project can move
forward in an efficient way:

1) Clear statement of responsibility.

Each type of component that operates within this system needs a clear definition and
statement of what it must do and must not do. Here is the big one:

a) Wrapper. It looks like what is now there needs to be separated into three things:
1) a workflow component that extends into the job from the orchestrator

2) awrapper script that communicates with the workshop extension and the
application
3) an optional additional piece that handles extra science work that does not below
in the wrapper (should really be considered science code). The wrapper needs a
more rigid interface to the framework components so that its behavior is
understood and predictable.
- what arguments must it take?
- how does it convey success or failure?
- where does it get its information?

A better wrapper interface may permit realtime status information to more easily flow
into the workflow / orchestration layers.

2) The types of data that are manipulated in the system need better definitions and
statements of responsibility. Here are a few:

a) Provenance. What is necessary here? what is the format? how is it communicated?
are there different types? Standards for attribute names and types need to be
established.

b) Parameters. What configures an algorithm? what is the ancillary data? can this help
form a provenance record automatically?

3) message logging. Might be good to consider a global message logging system with well-
defined message formats.

What we discussed and provided:

1) the workflow system requirement documents we developed for JDEM. The components
here are well defined and have a defined responsibility

2) documentation and information about the fhicl parameter library

3) re-locatable UPS for managing product releases and organization

We discussed how standardized (and typed) input and output parameters can be used by the
orchestration layer to inform wrappers of the files that it needs to do its work. This allows for a
better separation of concerns and better control over what is paths, locations, and whether or
not something has succeeded or not. This organization may also give most of the provenance
information automatically.

We briefly discuss the benefits of having looping and reduction expressions permitted in the
workflow definition.

Other notes

Mark Green from Tech-X showed us some 'Orbiter' web pages, relevant for Virtual file system
and process control management:

https://orbiter.sns.gov/

https://orbiter.txcorp.com/research/projects/orbiter/

Nanbor Wang from Tech-X presented the work that they have done on workflow as a result of
the JDEM workflow studies ((http://des-docdb.fnal.gov:8080/cgi-
bin/ShowDocument?docid=6168). This includes a functional language to describe the dataflow
and a DDS (Data Distribution Service) for execution of the pipeline components called DDSFlow.

Marko Slyz showed some slides with considerations for running on OSG (http://des-
docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=6170).

https://cdcvs.fnal.gov/redmine/projects/jdemsoc-private/wiki/Workflow_participant_protocol

The above link shows a standard wrapper system that we should consider (strongly) adopting
ideas from.

There are atomic units of work, which succeed or fail

FHiCL parameter configuration language (less verbose than XML like YAML) in use by Intensity
Frontier experiments. https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki

https://cdcvs.fnal.gov/redmine/documents/327 (click on quick_start.pdf)

"Re-locatable UPS"
Big advantages:

1. No root install needed, just unwind prebuilt binary tarball in a dir

2. Control over setup dependencies. Does *NOT* silently override previous setup in same
chain, very important control which helps manage dynamic libraries and differences
between 32/64 bits

3. Ability to relocate package to a remote file system — doesn’t work with all packages,
python for example hardcodes its build history in certain files.

Jim K believes that it would still be useful to see:

1. timing per module
2. strace info for access patterns

Other useful links:
https://cdcvs.fnal.gov/redmine/projects/jdemsoc-private/wiki
https://cdcvs.fnal.gov/redmine/documents/104

There are stakeholder and system requirements (last two links).

There is also a fhicl user guide

TODO List from Meeting

1. Margaret and Michael will propose a 'file tree' and file naming structure and distribute it
to group.

Points:

¢ file names should be unique,

* all exposures come with an exposurelD from the mountain, like 29771.

* would like to have filter and 'type' (bias,flat,science) embedded in the image name

* once files get to the 'processing stage', a 'processing number', p0,p1,p2 should be
embedded in the file name.

* Should avoid very long strings in the file name, i.e. no need for 'run' 20120214
or processingdatetime 20120214135634 in the filenames so long as you have the
exposure id and the processing version in the file name.

* inthe 'processing' subdirectories for an exposure, consider a set of files in a
directory called 'd29771' filename like:

d29771-g-Sci-p0-62-remap.fits
d29771-g-Sci-p0-62-bfi.fits
d29771-g-Sci-p0-62-bf.fits

d29771-g-Sci-p0-62-b.fits

d29771-g-Sci-p0-61-remap.fits
d29771-g-Sci-p0-61-bfi.fits
d29771-g-Sci-p0-61-bf.fits

d29771-g-Sci-p0-61-b.fits

d29771-g-Sci-raw.fits #one raw exposure
logs for this single epoch processing....

2. Jim K. and Marc P. are going to write up their assessment of the two-day workshop.
3. Liz B-G. will collect notes and summarize -- all welcome to contribute.

4. Marko will continue on path to try and get finalSE.py script to run on single Linux box
mode on 1 exposure (thinking of OSG considerations).

Appendix A - Breakdown of Single Epoch Workflow for DC6B
Breakdown of the current nightly processing and comparisons with Michelle's python script

Main config is in desdm/devel/Orchestration/trunk/etc/config.des. This defines the processing
sites and the file ingest step (Database/bin/find_ingest.pl which runs file_ingest.pl)

Notes:

- At the beginning of each block, workflow queries the DB to find input files including cal files.
- Science config files (i.e. sex.param) are currently not tracked as files in DB. They are
tracked as software (i.e. svn version)
- Workflow then divides the work into jobs based upon block/module definitions (i.e. by
number of lines in input list, by exposure, by CCD+band, by number of jobs, etc)
- Any pre steps (like creating a tmp DB table) are then run
- Thenindependent jobs are submitted to target machine and they run
- At the end of each block (success or failure), workflow uses find to locate files in entire run
directory on target machine that have been created or modified and ingests them into
database
- For blocks whose parallelism isn't defined by science (i.e. need entire exposure, matching
CCD or CCD+band, etc), the parallelism is usually tweaked prior to submission to optimize
based upon number of available compute resources.
- The wall times being set are for:
o Deprecated job submission method where each job is submitted to a queue thus
needing it's own wall time
o Currently used to tell condor not to start the job if the daemons (i.e. glidein)
aren't going to be around long enough.
o On our local condor machines where there is no preemption or glideins to die,
wall time is meaningless

Block list:

update_photflag,crosstalk_decam,createcor,imcorrect_decam_photflat,create_illumcor,illum_c
orrect,astrorefine_decam_test,scampqga,mask_decam,se_bkgd,remap,psfmodel_and_red_mod
elfit,psfex_ga,catalog_ingest,merge,psm,photcal

Update photflag for exposures

<block update_ photflag>
module list = update photflag
target_node = destest3
num _cpus = 1

</block>

<module update_photflag>

exec = ${des_home}/bin/update_photflag

args = -project ${project} -nite ${nite} -photflag ${photflag} -verbose ${verbose}
</module>

update photflag

Simple program that updates photflag in exposure table. Current running assumption was
entire nite was photometric or not.

Crosstalk

<block crosstalk decam>
module_list = crosstalk_decam
#num_cpus = 8
num_jobs = 4

</block>

<module crosstalk_decam>
xml = generic.xml

output_dir = ${archive root}/${run_dir}/raw

exec=${des_home}/bin/crosstalk.pl

args=-archiveroot ${archive_root} -list ${crosstalk list} -binpath ${des_home}/bin
-outputpath ${output _dir} -detector ${detector} -crosstalk ${crosstalk file} -photflag
${photflag} -verbose ${verbose}

wall _mod = 30

<list crosstalk_list>
basename crosstalk
fileclass = src
filetype = src
query fields = fileclass,filetype,project,nite
min_num_per_job = 5

</list>
<file crosstalk_file>
fileclass = cal

filetype = xtalk
query_fields = fileclass,filetype,project,detector
</file>
</module>

crosstalk decam

o Gets list of src images (i.e. exposures from the mountain with header problems fixed)
for nite from DB (including bias and flat src images)
o Groups 5 images into one batch job (This is tweaked by operator depending on how
many compute resources they are using)
o Specifies 30 minutes for each batch job
Gets name of crosstalk coefficients file from DB
o Calls crosstalk.pl
o Checks for valid inputs
o Constructs image list from input list
o Runs DECAM_crosstalk with arguments on file list. DECAM_crosstalk splits up
image into 62 CCDS doing xtalk correction.

o

o Newer version of DECAM_crosstalk will also mark saturated pixels and handle
the overscan

Prototype python script: just calls DECAM_crosstalk with argument list on a single exposure
with hardcoded crosstalk coefficients file

Create bias and flat correction

<block createcor>
module_list = mkbiascor, mkflatcor
wall mod = 120

</block>

<module mkbiascor>
xml = generic.xml
mkdirs = ${archive_root}/${run_dir}/biascor
output_img = ${archive root}/${run_dir}/biascor/biascor_${ccd}.fits
exec=${des_home}/bin/mkbiascor
args=${bias_images} ${output_ img} -variancetype WEIGHT -median -verbose ${verbose}
Sopt{overscantype}

wall_mod=5

<list bias_images>
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=raw_bias
divide_by=ccd

</list>

<file bad_pixel_map>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=bpm
match=ccd

</file>

</module>

<module mkflatcor>

loop=band

xml = generic.xml

exec=${des_home}/bin/mkflatcor

mkdirs = ${archive_root}/${run_dir}/flatcor

output_img = ${archive root}/${run_dir}/flatcor/flatcor_${band} ${ccd}.fits

args=${dome_flat images} ${output img} -median -bias ${bias_cor} -bpm
${bad_pixel map} -pupil ${pupil} -variancetype WEIGHT -verbose ${verbose}
Sopt{overscantype}

wall_mod=5

<list dome_flat_images>
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=raw_dflat
divide_by=ccd
</list>
<file bad_pixel_map>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=bpm
match=ccd
</file>
<file pupil>
query_fields = fileclass,filetype,project,detector

fileclass=cal
filetype=pupil
match=ccd

</file>

<file bias_cor>
depends mkbiascor
filename = biascor_ ${ccd}.fits
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=biascor
match=ccd

</file>

</module>

Note: createcor will not be in production firstcut pipeline. It will be run in it's own pipelines
(precal, supercal)

mkbiascor

Get list of individual CCD bias images for nite from DB

Allow 5 minutes per job, each job is one CCD

Get bad pixel mask file name for each CCD from DB

Run mkbiascor with argument list (this code makes directory paths)

O O O O

mkflatcor

Get list of individual CCD flatfield images for nite from DB

Allow 5 minutes per job, each job is one CCD+band

Get bad pixel mask file name for each CCD from DB

Get pupil ghost file name for each CCD from DB

Get bias image file name for each CCD made in mkbiascor step (workflow uses pattern
to make name, no DB when in same block)

o Run mkflatcor with argument list (this code makes directory paths)

O O O O O

Apply bias and flat corrections

<block imcorrect_decam_photflat>

module_list = imcorrect_decam photflatcor
#num_cpus = 4
wall mod = 180

</block>

<module imcorrect_decam_photflatcor>
xml = generic2.xml

prep output_path = ${archive root}/${run_dir}/red
output_science_images =
${archive root}/${run_dir}/aux/science_ images_output_${job_id}.
list
science_images = ${archive root}/${run_dir}/aux/science_images_${job_id}.list
output_science_images =
${archive root}/${run_dir}/aux/science_images_output_ ${job_id}.list

execl=${des_home}/bin/imcorrect prep.pl

argsl=-inputlist ${science_ images} -outputlist ${output_science images} -outputpath
${prep_output path}

exec2=${des_home}/bin/imcorrect

args2=${science_images} -output ${output science_images} -overscan -bias
${bias_cor} -photflatten ${photflat cor} -flatten ${flat cor} -bpm ${bad pixel map} -
pupil ${pupil} -variancetype WEIGHT -interpolate col 2.0 -updatekeyword SKYBRITE -MEF
-verbose ${verbose} $opt{overscantype}

wall_mod=30

<list science_images>
filename = science_images_${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=raw_obj
divide_by=ccd+band
</list>
<file bad_pixel_map>
query_ fields = fileclass,filetype,project,detector
fileclass=cal
filetype=bpm
match=ccd
</file>
<file bias_cor>
depends zerocombine
filename = biascor_ ${ccd}.fits
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=biascor
match=ccd
</file>
<file pupil>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=pupil
match=ccd
</file>
<file flat_cor>
depends flatcombine
filename = flatcor_${band} ${ccd}.fits
query_ fields = fileclass,filetype,project,nite
fileclass=red
filetype=flatcor
match=band+ccd

</file>
<file photflat_cor>
fileclass cal

filetype photflatcor
match ccd
query_ fields fileclass,filetype,project,detector
</file>
</module>

Call imcorrect_prep.pl

o Create list of output paths (in current workflow system, this could now be done prior
to jobs)

Call imcorrect with argument list (this code makes directory paths)

o ltis optimized to read cal files once, and loop through science images applying the
cals.
o This is why the list/files can only have single CCD+band each.

Prototype python script: just calls imcorrect with argument list on a single exposure with

Create illuminator correction and fringe correction

Production runs will run this as separate SUPERCAL pipeline and firstcut SE processing will use pre-
calculated files

<block create_illumcor>
module list = mksupersky, mkillumcor
#num_cpus = 5

</block>

<module mksupersky>
xml = generic.xml

output_img = ${archive root}/${run_dir}/supersky/supersky ${band} ${ccd}.fits

output_dir = ${archive root}/${run_dir}/supersky

wall mod = 360

exec = ${des_home}/bin/mksupersky

args = ${reduced_science} ${output img} -srcgrowrad 20 -verbose ${verbose} -
variancetype WEIGHT

<list>
<reduced_science>
fileclass = red
filetype = red
divide_by = ccd+band
query_fields = fileclass,filetype,project,nite
</reduced_science>
</list>
</module>

<module mkillumcor>
xml = generic.xml
illumcor = ${archive root}/${run_dir}/illumcor/illumcor_ ${band} ${ccd}.fits
fringecor = ${archive_root}/${run_dir}/fringecor/fringecor_ ${band} ${ccd}.fits
exec=${des_home}/bin/mkillumcor
args=${supersky} -minsize 5 -maxsize 100 -ranseed -301 -output_illum ${illumcor} -
outpu
t_fringe ${fringecor} -verbose ${verbose}

wall_mod=40

<file supersky>
depends mksupersky
filename = supersky_ ${band} ${ccd}.fits
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=supersky
match=ccd+band

</file>

</module>

mksupersky

o Get list of reduced science images for each band for each CCD for nite from DB (output
of imcorrect)

o Allow 20 minutes per job, each job is one CCD? This currently requires imcorrect to have
been run on the full night of images.

o Call mksupersky with arguments (this code makes directory paths).

mkillumcor

o Uses files made in mksupersky step to create the illumination correction files.
o Calls mkillumcor with arguments (this code makes directory paths)

Apply illumination and fringe correction
<block illum_correct>

module_list = illum correct
num_cpus = 3
</block>

<module illum_ correct>

xml = generic.xml

exec=${des_home}/bin/illum_correct.pl

args=-inputlist ${detrended_images} -outputlist ${outputlist} -archiveroot
${archive root} -run ${submit run} -band ${band} -illum ${illumcor} -fringe
${fringecor} -detector ${detector} -verbose ${verbose}

outputlist=${archive_root}/${run_dir}/aux/illum corrected imaged ${job_id}.list
wall_mod=60

<list detrended_images>
filename = reduced_images_${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=red
divide_by=ccd+band
</list>
<file illumcor>
depends illumcor
filename = illumcor$
query_ fields = fileclass,filetype,project,nite,filename
fileclass=red
filetype=illumcor
match=ccd+band
</file>
<file fringecor>
depends fringecor
filename = fringecor$%
query_ fields = fileclass,filetype,project,nite,filename
fileclass=red
filetype=fringecor
match=ccd+band
</file>
</module>

illum_correct.pl

o callillum_correct.pl with arguments
o Define bands with fringing depending on instrument (z,Y for DECam)

o Runimcorrect to apply illumination correction, if z or Y band also apply fringing
correction

Prototype python script: just calls imcorrect with argument list on a single exposure with
hardcoded files

Calculate WCS and apply

<block astrorefine decam test>

module list = catalog exposure, scamp_ decam
module_list_pre = create_scamp_inputs
#num_cpus = 5

</block>

<module create_scamp_inputs>

exec=${des_home}/bin/create_ SCAMP_ inputs.pl

args=-project ${project} -nite ${nite} -astrostd ${astrostd} -
outputpath=${work dir} -detector ${detector} -list
catalog exposure reduced_images_ full.list -dra 1.1 -ddec 1.1 $opt{truthtablecommand}
</module>

<module catalog exposure>
xml = generic3.xml

copy_reduced_images =
${archive root}/${run_dir}/aux/reduced images_copy_ ${job_ id}.list

execl = ${des_home}/bin/copyimages.pl
argsl = -inputlist ${reduced images} -outputlist ${copy_reduced images} -run
${submit run} -archiveroot ${archive root}

exec2 = ${des_home}/bin/runSExtractor

args2 = ${copy reduced images} -terapixpath ${des_prereq}/bin -binpath
${des_home}/bin -etcpath ${des_home}/etc -outputpath ${archive_root}/${run_dir}/red -
scamp -weight_ threshold 0.0 -detect_threshold 2.5

exec3 = ${des_home}/bin/create_fullscamp.pl
args3 = -list ${copy_reduced images} -outputpath ${archive root}/${run_dir}/red -
cleanup

wall_mod=15

<list reduced_images>
filename = reduced_images_${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=red
divide_ by=exposurename

</list>

</module>

<module scamp_decam>
configfile = ${des_home}/etc/default.scamp
copy_reduced_ images =
${archive root}/${run_dir}/aux/reduced images_copy_ ${job_id}.list99
output_dir = ${archive_root}/${run_dir}/red
xml = generic.xml
wall mod = 180
exec = ${des_home}/bin/runSCAMP.pl
</module>

create scamp inputs

Runs create_scamp_inputs.pl

Check arguments

Get list of exposures from file list

Get ra & dec for each exposure from DB

Create list of pointings to use in query of standard star catalog

Call createAstroStds routine to execute queries and make binary fits table, also creates
.ahead files

O O O O O

catalog_exposure

o Get list of reduced exposures from DB
o Run copyimages.pl if trying to restart from an intermediate step.
o Make copy of input files

Run runSExtractor with scamp option (C wrapper)

Make output directory path

Uncompress image if needed

Extract header keyword information

run sextractor with arguments to create catalogs for scamp step.
Inserts FWHM value from catalog back into image

O O O O O

Run create_fullscamp.pl

o Creates a catalog per exposure from the individual sextractor catalogs created above

scamp
Run runSCAMP.pl

o Define header keywords that will be added/modified by SCAMP
o Run scamp, may need to do retries with adjusted matching criteria if image fails.

Prototype python script: calls runSExtractor with arguments. Runs create_fullscamp.pl. Runs

Ingest SCAMP QA output

<BLOCK scampga>
num_jobs 1
module list scampga
</block>
<module scampga>
exec = ${des_home}/bin/ingestSCAMPga.pl
args = -project ${project} -nite ${nite} -run ${submit run} -list ${scampga in} -
verbose ${verbose} -debug
<list scampga_in>

query_ fields = fileclass,filetype,project,nite,filename
fileclass = red
filetype runtime

filename = scamp.xml

</list>
</module>

scampga

o runs perl code (ingestSCAMPqa.pl) that reads the scamp.xml QA files output by SCAMP
and ingests certain values into the exposure_qa table.

o currently runs as single job, but with code rewrite could be divided up into per exposure
jobs.

Mask bright stars, etc

<block mask_decam>
module list = mask_decam
num_jobs = 128
num_jobs = 192
num_jobs = 312
</block>

<module mask_decam>

copy_reduced_ images =
${archive root}/${run_dir}/aux/reduced images_copy_ ${job_ id}.list

args2 = -filelist ${copy reduced images} -astrostd ${astrostd} ${installpaths}
Sopt{interp}

installpaths = -etcpath ${des_home}/etc -binpath ${des_home}/bin -terapixpath
${des_prereq}/bin

exec2 = ${des_home}/bin/runMKMASK.pl

argsl = -inputlist ${reduced_images} -outputlist ${copy_ reduced_images} -run
${submit run} -archiveroot ${archive root}

execl = ${des_home}/bin/copyimages.pl

astrostd = ${archive root}/${run dir}/aux/${run} astrostds.fits

wall mod 360
<list>
<reduced_images>
fileclass = red
filetype red
filename reduced images_${job_id}.list
min_num per_ job = 40
query_fields = fileclass,filetype,project,nite
</reduced_images>
</list>
</module>

mask_decam

o

Get list of images to process. Group them into 40 per job.

Run copyimages.pl if trying to start new run from an intermediate step.
o Makes copy of input files into new run

o run runMKMASK.pl

o Use SExtractor to create defects file for masking routine (calls sex directly with
argument list)

o Run mask making code

o

Prototype Python script: runs runMKMASK.pl

Calculate background image

<block se_bkgd>
module_list = se_bkgd
num_jobs = 312

</block>

<module se_bkgd>

args = -filelist ${detrended images} -terapixpath ${des_prereq}/bin -etcpath
${des_home}/etc -outputdir ${outputdir} -verbose ${verbose}
outputdir = ${archive root}/${run_dir}/red/
xml = generic.xml
wall mod = 600
exec = ${des_home}/bin/runBKG.pl
<list>
<detrended_images>
fileclass = red
filetype = red
filename = reduced images_${job_id}.list
min_num_per_ job = 200
query_fields = fileclass,filetype,project,nite
</detrended_images>
</list>
</module>
se_bkgd

o Get list of input files to process. Group them into 200 per job.
o run runBKG.pl

o Use SExtractor to create the background image (calls sex directly with argument

list)
Prototype Python script: runs runBKG.pl

Create remap files
<block remap>

module_list = remap
module_list_pre = create_swarp_remap_ inputs
num_cpus = 1

remap is not running threaded
num_jobs = 128
num_jobs = 192
num_jobs = 312
</block>

<module create_swarp_remap_inputs>
exec=${des_home}/bin/create SWARP_ inputs.pl

args=-coadd-project ${coadd_project} -input-path ${work dir}/aux -input-base
reduced_science -output-path ${work dir}/aux -output-base swarp_ input -detector

${detector} -bin-path ${des_home}/bin
</module>

<module remap>
xml = generic.xml
output_dir = ${archive root}/${run_dir}/remap
xml dir = ${archive root}/${run_dir}/xml

swarp_remap list = ${archive_root}/${run_dir}/aux/swarp_ input_ ${job_id}.list

coaddheadfile = ${des_home}/etc/desremap.head

exec=${des_home}/bin/remap.pl
args=-preregbin ${des_prereq}/bin -bindir ${des_home}/bin -list
${swarp_remap list} -o

utdir ${output dir} -verbose ${verbose} -c ${des_home}/etc/default.swarp -nthread 0 -
clean
up -coaddheadfile ${coaddheadfile} -xmlpath ${xml dir} S$opt{fscaleastrovar}

wall _mod=100

<list reduced_science>
filename = reduced_science_ ${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass = red
filetype = red
min_num_per_job = 200

</list>

</module>

create_swarp_remap_inputs

o run create_SWARP_inputs.pl
o Get database connection, then get the tile size information for this "coadd-
project":
o Get the rest of the info we need from the DB for each image:
o For each image loop over all tiles in the project to find which tiles have the
minimum overlap with the image
o Generate input lists for SWARP in format:
<abs input file> <tilename> <pixelsize> <tile ra> <tile dec> <tile npix_ra>
<tile npix_dec>

o runremap.pl
o Define header keywords to insert into remap file
Get options
Make output directory if it doesn't exist
Construct remap file name
Construct swarp command (include keywords to propagate to remap files)
Run swarp.

O O O O O

Prototype Python script: runs remap.pl

Create psfmodel catalogs

<block psfmodel_and_red_modelfit>
module_list = psfmodel_and red modelfit
num_jobs 128
num_jobs 192
num_jobs = 312

</block>

<module psfmodel and red modelfit>
xml = generic.xml

exec = ${des_home}/bin/runSExtractor

args = ${psf modelfit red} -terapixpath ${des_prereq}/bin -binpath ${des_home}/bin
-etcpath ${des_home}/etc -outpath ${archive_root}/${run dir}/red —xmlpath
${archive root}/${run_dir}/xml -psfex -reduce -model fitting

wall_mod=360

<list psf_modelfit_red>
filename = psf_red modelfit_ ${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=red
min_num_per_job=20

</list>

</module>

o Run runSExtractor with psfex option (C wrapper)

Make output directory path

Uncompress image if needed

Extract header keyword information

Extract pixel scale and convert to arcsec

Run sextractor with arguments to create catalogs for psfex step.
Run psfex

Run sextractor on reduced images with model fitting

O O O O 0 O O

Prototype Python script: runs runSExtractor with arguments -reduce -psfex -model_fitting

Ingest psfex QA
<block psfex ga>
module_list = psfex_qga

num_jobs = 1
</block>
<module psfex ga>
args = -project ${project} -nite ${nite} -list ${psfex_ga} -verbose ${verbose} -
type red
num_jobs = 1
exec = ${des_home}/bin/ingestPSFqga.pl
<list>
<psfex ga>
fileclass = red
filetype = =xml
filename = psfex_%.xml
query_ fields = fileclass,filetype,project,nite,filename
</psfex_ga>
</list>
</module>
psfex_qa

o Run ingestPSFga.pl
o Ingest PSFEX QA data into database

Ingest catalogs into object table

<block catalog_ingest>
target_node = destest3
num_cpus = 2
num_jobs = 32
module_list_pre = create_tmp_objects_table
module_list = ingest_cat
</block>

<module create_tmp_objects_table>

exec = ${des_home}/bin/create_ingest_table

args = -main-table ${object_table} -table-name ${tmp_object table} -tablespace
DES_SE_T -temp-table-name OBJECTS_MERGE_GT

</module>

<module ingest_cat>

args = -filelist ${all catalogs} -archivenode ${archive node} -tmptable
OBJECTS_MERGE_GT -mergetable ${tmp object table} -batchsize 50
xml = generic.xml
wall mod = 600
exec = ${des_home}/bin/catalog_ingest.pl
<list>
<all catalogs>
fileclass = red
filetype = %\ _cat
filename = red catalogs_${job_id}.list
format = config
query_ fields = fileclass,filetype,project,nite
</all_catalogs>
</list>
</module>

create_tmp_objects_table

o Runcreate_ingest_table
o Create temporary table to load catalog data into.

ingest_cat

o Run catalog_ingest.pl
o Ingest catalogs into temporary table

Merge tmp object table into full object table

<block merge>
module_list

merge_catalogs

target_node = destest3
num _cpus = 1
num_jobs = 1
</block>
<module merge catalogs>
args = -project ${project} -file run ${run} -validate -source-table
${tmp_object_ table} -target-table ${object table} -verbose ${verbose}
xml = generic.xml
exec = ${des_home}/bin/merge objects
</module>

merge catalogs
Run merge objects
Merge temporary table into main table
Run PSM
<block psm>
module_list = psm
target_node = destest3
num _cpus = 1
</block>

<module psm>

mkdirs = ${archive_root}/${run_dir}/QA

exec = ${des_home}/bin/runPSM
e --magType mag_psf -v 2 --verbose ${verbose} --maxrms 0.015 --useOnlyCurrentObjects -
-updateDB --url jdbc:oracle:thin:@//leovipl48.ncsa.uiuc.edu:1521/ --dbName desoper
</module>

psm

o Executes wrapper runPSM
o Runs PSM for each band without updating DB checking that the
o rmsis less than specified max and that there are results for
o all CCDs. If all bands pass, then reruns updating DB.
o QA plots are copied to a QA dir at the end of the wrapper

Use results from PSM to update object zeropoints
<block photcal>

module_list = photcal
target_node = destest3
num _cpus = 1

</block>

<module photcal>
args = ${nite} ${project} -run ${run} Sopt{specificband} -verbose ${verbose}
exec = ${des_home}/bin/photcal

</module>

photocal

o Run photcal
o Uses results from psm
o Update zeropoints in DB

