Proposal for reworking the DESDM
Wrapper code

Liz Buckley-Geer
Fermilab
February 27, 2012

1.0 Introduction
The purpose of this document is to propose a way of reworking the DESDM wrapper
codes. This proposal aims to solve the following problems:
* Provide a uniform calling sequence for all wrappers
* Provide the science code parameters via configuration files
* Specify the input files that will be consumed and the output files that will be
produced
* Capture provenance information that can be provided to the
workflow/orchestration layer for archival
The goal is to achieve this without initially having to do a major rewrite of the
workflow/orchestration layer.
This proposal does not address the issues of directory structure, unique filenames or
what kinds of provenance need to be collected and in what format it should be stored.

2.0 Definitions, Acronyms and Abbreviations

Block - A workflow component that performs a task, typically by reading input and
producing output. A block is either a single module, or a composite of one or more
modules.

Application - a self-contained piece of software that performs one or more tasks.
SExtractor is an example of an application.

FHICL — Fermilab Hierarchical Configuration Language. This is a language that was
developed at Fermilab to support run-time configuration for several projects. It has C++
and Python APIs. Pronounced “fickle”. We might adopt this product if we redo the
wrappers in Python.

Module — a wrapper plus its wrapper configuration constitutes a module.

WCL — Workflow Configuration Language. This is the language used to define the
configuration for the wrapper. It is based on the Perl Config:General language.
Pronounced “wickle”. If we retain the wrappers in Perl we would continue to use this
product.

Wrapper — a piece of code whose action is triggered by a workflow engine. From
the point of view of the workflow engine, the task carried out by a wrapper is atomic in

that the task completes successfully or fails to complete. Moreover, the workflow
engine does not manipulate the internal state of a wrapper. A wrapper might, for
example, be a shell script that runs a data processing application to perform a specific
task.

Wrapper configuration - The configuration of a wrapper includes the components
that are needed to run the wrapper. The configuration may include one or more of the
following components: the program that is executed, settings for tunable parameters,
and specification of the data to be processed.

Wrapper protocol — rules for specification of input data, output data, configuration
and ancillary filenames that all wrappers must obey.

3.0 What language to use for the wrappers?

This decision depends to a large extent on what the plans are for Orchestration.
Currently all the workflow and wrappers (ignoring the ones that are in C) are written in
Perl. If we feel that in the long run we need to completely re-do the Orchestration
package then it has been suggested that we should migrate to Python. In that case you
would probably want to implement this proposal by re-writing the wrappers in Python
to start with. However if we decide that the current Orchestration package can do the
job with relatively minor additions then the argument for moving the wrappers to
Python is much less clear. The wrappers access various Perl routines that would have to
be provided in Python and maintaining two versions that could diverge would be
undesirable. If we decide to adopt this proposal then this decision will need to be taken
before work commences. Another thought to consider is that the FNAL EAG group is
short on Perl experience. It is also not the language of choice for projects in CD in
general.

4.0 Wrapper protocol

We propose to use the workflow wrapper protocol that was defined as part of the JDEM
Science Operations Center workflow project
(https://cdcvs.fnal.gov/redmine/projects/jdemsoc-
private/wiki/Workflow_wrapper_protocol) to define the wrapper interface.

It has the following requirements (lifted from the above link with appropriate
modifications from discussions with Jim and Marc)

Rules about filenames
In all cases below, when a filename is specified, the wrapper must accept (but does
not have to require) a full pathname.

Specification of input files

A wrapper must accept a command-line switch -input fname where fname is the
name of a file that contains the input files that are to be processed. The file specified by
fname is expected to be a WCL/FHICL language file. These can be full pathnames or
relative, in which case it will be assumed that they will be created in the current working
directory.

Specification of program configuration

The wrapper must accept a command-line switch -config fname, where fname is
the name of a file. The file specified by fname is expected to be a WCL/FHICL language
file carrying configuration parameters for the application. These can be full pathnames
or relative, in which case they will be assumed to be available in the current working
directory.

Specification of ancillary data files

Ancillary data files (e.g. calibration files, etc.), are to be indicated by the command-
line switch -ancillary fname, where fname is the name of a file. The file specified by
fname is a file containing the names of the data files needed. The file specified by fname
is expected to be a WCL/FHICL language file. These can be full pathnames or relative, in
which case they will be assumed to be available in the current working directory.

Specification of output files

A wrapper must accept a command-line switch -output fname where fname is the
name of a file that contains the output files that have been produced by the wrapper.
The file specified by fname is expected to be a WCL/FHICL language document. The
workflow will provide this file with the names of the output files including any
provenance files that should be created. These can be full pathnames or relative, in
which case they case it will be assumed that they will be created in the current working
directory.

We should be able to unit test the wrappers in this model as a user should be able to
specify the contents of the argument list by providing the files described above with the
correct contents.

4.0 Concrete example

It is useful to explore a concrete example of how this might work. We have taken the
imcorrect_decam_photflat module that does the basic image de-trending as our
example. We have just confined ourselves to the changes to the wrapper arguments
and the provision of the wrapper configuration. There may be other changes needed in
the file and directory specifications in order to handle a new file structure.

Here is the current module file imcorrect_decam_photflatcor.des

<module imcorrect_decam_photflatcor>
xml = generic2.xml

prep output_path = ${archive root}/${run_dir}/red
science_images = ${archive root}/${run_dir}/aux/science_images_${job_id}.list
output_science_images =

${archive root}/${run_dir}/aux/science_images_output_ ${job_id}.list

execl=${des_home}/bin/imcorrect prep.pl

argsl=-inputlist ${science_ images} -outputlist ${output_science_ images} -
outputpath ${prep output path}

exec2=${des_home}/bin/imcorrect

args2=${science_images} -output ${output science_images} -overscan -bias
${bias_cor} -photflatten ${photflat cor} -flatten ${flat_cor} -bpm
${bad_pixel map} -pupil ${pupil} -variancetype WEIGHT -interpolate col 2.0 -
updatekeyword SKYBRITE -MEF -verbose ${verbose} S$opt{overscantype}

wall_mod=30

<list science_images>
filename = science_images_${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=raw_obj
divide_by=ccd+band
</list>
<file bad pixel map>
query_ fields = fileclass,filetype,project,detector
fileclass=cal
filetype=bpm
match=ccd
</file>
<file bias_cor>
depends zerocombine
filename = biascor_ ${ccd}.fits
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=biascor
match=ccd
</file>
<file pupil>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=pupil
match=ccd
</file>
<file flat_cor>
depends flatcombine
filename = flatcor_${band} ${ccd}.fits
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=flatcor
match=band+ccd

</file>
<file photflat_cor>
fileclass cal

filetype photflatcor
match ccd
query_fields fileclass,filetype,project,detector
</file>
</module>

Here is the modified file. The changes are shown in red. It turns out that imcorrect is
one of the anomalies in that it doesn’t have a wrapper and is invoked directly in the
module with an argument list. To make things uniform we have assumed that we would
create a wrapper for it. We have left the imcorrect_prep.pl script asis as it is not a
wrapper and it doesn’t produce output files in the same sense. Obviously work will be
needed on file naming conventions, we have just made something up for illustration.

<module imcorrect_decam_photflatcor>
xml = generic2.xml

prep_output path = ${archive root}/${run_dir}/red
science_images =

${archive root}/${run_dir}/aux/science_images_${job_id}.list
output_science_images =

${archive root}/${run_dir}/aux/science_images_output_ ${job_id}.list

input_files = ${archive_root}/${run_dir}/aux/imcorrect_input_${job_id}.wcl

output_files = ${archive_root}/${run_dir}/aux/imcorrect_output_${job_id}.wcl

ancillary files =
${archive_root}/${run_dir}/aux/imcorrect_ancillary_files_${job_id}.wcl

config file =
${archive_root}/${run_dir}/aux/imcorrect_configuration_${job_id}.wcl

execl=${des_home}/bin/imcorrect prep.pl
argsl=-inputlist ${science_ images} -outputlist ${output_science_ images} -
outputpath ${prep output path}

exec2=${des_home}/bin/imcorrect.pl
args2=-input ${input_files} —output $[output_files} —config ${config_file}
-ancillary ${ancillary_files}

<config imcorrect>
filename = imcorrect_decam_photflatcor.wcl
</config>

<provenance prov_imcorrect>
filename = imcorrect_decam_photflatcor${job_id}.prov
</provenance>

<list science_images>
filename = science_images_${job_id}.list
query fields = fileclass,filetype,project,nite
fileclass=red
filetype=raw_obj
divide_by=ccd+band
</list>
<file bad_pixel_map>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=bpm
match=ccd
</file>
<file bias_cor>
depends zerocombine
filename = biascor_ ${ccd}.fits
query_ fields = fileclass,filetype,project,nite
fileclass=red
filetype=biascor
match=ccd
</file>
<file pupil>
query_fields = fileclass,filetype,project,detector
fileclass=cal
filetype=pupil
match=ccd
</file>
<file flat_cor>

depends flatcombine

filename = flatcor_${band} ${ccd}.fits

query fields = fileclass,filetype,project,nite
fileclass=red

filetype=flatcor

match=band+ccd

</file>
<file photflat_cor>
fileclass cal

filetype photflatcor
match ccd
query_fields fileclass,filetype,project,detector
</file>
</module>

5.0 Configuration files

How should we handle the application configuration? We will take imcorrect as an
example but the same observations probably apply to the other applications. There are
a number of parameters that control what imcorrect will do, all have default values that
are hard-coded in the C code. They can be over-ridden by supplying command line
arguments.

The following options come to mind:

1. We could define the configuration file to contain only the default values for all
parameters. We would load the default configuration and then override the
necessary parameters. The command line would contain all the parameters and
their values.

2. We could list all the parameters but use the values that we know that we want
rather than using override mechanism.

3. We could just list the parameters that we want to set differently from the
defaults

Options 1 and 2 allow you to capture the full command line arguments and their values
into the provenance system. However for an application with many parameters the
command line could get long. Option 3 doesn’t. It doesn’t seem right that in order to
find out the values of the options that weren’t listed you have to read the source code.
In the example that follows for imcorrect we have used option 2.

imcorrect_decam_photflatcor.wcl

<imcorrect>
nooverscan = false
interpolate_col = 2.0
illumination = false

scaleregion = 500,1500,1500,2500
variancetype = WEIGHT

noisemodel = SKYONLY

minsize = 4

maxsize 1
ranseed
MEF = true

scale_interpolate = 1.0,10.0
verbose = 1

28
-564

overscantype = 0
</imcorrect>

imcorrect_decam_photflatcor.fcl
imcorrect: {

nooverscan : false
interpolate_col : 2.0
illumination : false

scaleregion : [500,1500,1500,2500]
variancetype : WEIGHT
noisemodel : SKYONLY

minsize : 4
maxsize : 128
ranseed : -564

MEF : true

scale_interpolate : [1.0,10.0]
verbose : 1

overscantype : 0

6.0 Sequence of operations

6.1 Orchestration
Orchestration will parse the imcorrect_decam_photflatcor.des file as usual. The
examples are shown with WCL, they would look similar in FHICL. It will do the following
extra steps:

1. From the <list science_images> create a file named according to the contents of

Sinput_files. This file will contain the following:
<input>
filenames = filel.fits,file2.fits,file3.fits
</input>

2. Create a file named according to the contents of Soutput_files. This file will
contain the output file list created by the imcorrect_prep.pl script. It will also
contain the name of the provenance file that the wrapper will create. This file

will contain the following:
<output>
filenames = filel out.fits,file2 out.fits,file3_out.fits
</output>
<provenance>
filename = imcorrect_decam photflatcor${job id}.prov
</provenance>

3. Create a file named according to the contents of $ancilliary_files. This file will

contain the following:
<bias>
filename = biascor_${ccd}.fits
</bias>
<flat>
filename = flatcor_${band} ${ccd}.fits
</flat>
<bpm>
filename = bpm.fits
</bpm>
<pupil>
filename = pupil.fits
</pupil>
<photflat>
filename = photflat.fits

</plotflat>
4. Create a file named according to the contents of Sconfig_file. This file will
contain the name of the file specified in the <config> block and any variables that
need to be overridden.

<<include imcorrect_decam photflatcor.wcl>>
overscantype = 2

5. After the wrapper has run the provenance information is collected. This includes,
but it not limited to, the list of input files and their corresponding output files
and the application command line. It is read from the file pointed to by
Soutput_files.

6.2 Wrapper script
The wrapper script imcorrect.pl will do the following:

1. Read the contents of Sinput_files and Soutput_files and put them in the correct
format.

2. Read the contents of Sconfig_file and Sancillary_files and construct the correct
command line. Run the imcorrect application.

3. Create the provenance information in the file
imcorrect_decam_photflatcorS{job_id}.prov. This would include things like the
command line arguments and other stuff to be determined.

7.0 Conclusions

If we think this looks like a useful way to proceed then we would need to work through
all the use cases to see if there are flaws, both for DESDM and CP. We also need to
figure out exactly what provenance information needs to be collected in each case and
see whether the wrapper can collect it.

If, after this exercise, we still conclude that this is a fruitful direction then we would
need to address the language choice.

