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ABSTRACT

In this paper we describe the data acquisition and control system of the Dark Energy Camera (DECam),
which will be the primary instrument used in the Dark Energy Survey (DES). DES is a high precision multi-
bandpath wide area survey of 5000 square degrees of the southern sky. DECam currently under construction
at Fermilab will be a 3 square degree mosaic camera mounted at the prime focus of the Blanco 4m telescope
at the Cerro-Tololo International Observatory (CTIO). The DECam data acquisition system (SISPI) is
implemented as a distributed multi-processor system with a software architecture built on the Client-Server
and Publish-Subscribe design patterns. The underlying message passing protocol is based on PYRO, a
powerful distributed object technology system written entirely in Python. A distributed shared variable
system was added to support exchange of telemetry data and other information between different components
of the system. In this paper we discuss the SISPI infrastructure software, the image pipeline, the observer
interface and quality monitoring system, and the instrument control system.
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1. INTRODUCTION

In an effort to find out why 95% of the universe is dark, a number of large scale surveys of the sky with new
ground based instruments have been proposed. Among
the most promising initiatives is the Dark Energy Survey
(DES). DES is a next generation sky survey aimed
directly at understanding this mystery. Over 525 nights
DES will survey a 5000 sg-degrees area of the sky in five
filter bands using a new 3 deg” camera (DECam) on the
Blanco 4m telescope [1, 2]. The survey area will overlap
with the South Pole Telescope [3] and the VHS VISTA
survey [4]. DES is designed to measure the dark energy
equation of state parameter with four complementary
techniques: galaxy cluster counts, weak lensing, angular
power spectrum and type la supernovae. The
combination of these techniques will produce a factor of Fiure 1: The DECAm test vessel with a partly bonulated
~4.6 improvement over current experiments in the figure fooe Jlane and 1 of 3 electronics L %ptical
of merit defined by the Dark Energy Task Force. The  corrector, hexapod, filter changer and shutter are not
Dark Energy Camera, the primary instrument for DES is  shown.




currently being assembled at Fermilab. A photo of the test vessel with a partly assembled focal plane is
shown in Figure 1. In a little more than a year DECam will be mounted at the prime focus of the Blanco 4m
telescope at CTIO. The instrument consists of a 3 square degrees focal plane covered by 62 2kx4k science
CCDs and 12 2kx2k CCDs for focus and guiding, a five element optical corrector, a hexapod to position the
camera, up to eight filters, a modern readout and control system, and the associated infrastructure for
operation in a new prime focus cage. A more detailed description of the DECam instrument can be found in

[1].
2. SISPI

The DES mountain top data acquisition system is called the Survey Image System Process Integration
(SISPI). A schematic overview of the system is shown in Figure 2. An exposure sequence starts with the
observer sending a request to the Observation Control System or OCS in the center of the block diagram.
Exposure parameters such as coordinates, exposure time etc can be entered manually by the observer, come
from a script or are submitted by an automated process (ObsTac) that knows the survey history and strategy
as well as the current observing conditions. The latter is available only in survey mode. Upon receipt of the
exposure request the OCS queries the state of the instrument and sends requests to the telescope control
system to slew the telescope and to the filter changer mechanism to load the filter requested for the next
exposure.
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Figure 2: Block diagram of the DECam read-out and control system (SISPI).

The OCS waits for these activities to complete before prepping the CCDs and the front end electronics to
receive a new image. At the end of an exposure the OCS closes the shutter, assigns an image builder process
to assemble all pixel streams into the full image and triggers the electronics to readout the CCDs. Image data
flows from the focal plane CCDs and the Monsoon front end electronics to the Image Acquisition and Image
Builder systems before it is recorded on a storage device and handed over to the DES Data Management
system. The image acquisition system is pipelined and the OCS can start processing the next exposure as soon
as all pixels are digitized. The performance requirements for the DECam read-out and control system are set
by the size of the focal plane, the read-out time and the typical DES exposure time of 100 seconds. With 62
science CCDs or 520 Mpixels and 16 bits per pixel the size of a DECam exposure is approximately 1 GByte.
At a rate of 250 kpix/s it takes about 17 seconds to transfer the data from the focal plane to the computers of



the Image Acquisition system. During this time the telescope slews to the next position. In order to maximize
survey efficiency SISPI is designed to operate within these constraints and not to add any additional dead
time.

The SISPI architecture can be broken up into four functional units: the image pipeline, the instrument control
system, data quality monitoring and the user interfaces including the observer console. We will discuss each
of these components as well as the underlying software infrastructure in the next sections.

3. INFRASTRUCTURE SOFTWARE

The division of SISPI in an application and an infrastructure layer is shown schematically in Figure 3. SISPI
is coded in Python with some elements of the instrument control system written in Labview. Supported
operating systems include Linux and Max OS X. Due to its distributed architecture inter-process
communication takes a central place in the design of the SISPI infrastructure software. Our solution is based
on the Python Remote Objects (PYRO) software package developed by I. de Jong [5]. PYRO is an advanced
and powerful distributed object technology system written entirely in Python. It allows objects to interact just
like normal Python objects even when they are spread over different computers on the network. PYRO
handles the network communication transparently. PYRO provides an object-oriented form of remote
procedure calls similar to Java's Remote Method Invocation (RMI). A name server supports dynamic object
location rendering (network) configuration files obsolete. Using the name server SISPI processes can locate
and establish communication links with other processes irrespective of the underlying hardware architecture;
an important feature for the any multi-processor communication system. In a test system, for example, most
of the applications might share one or two computers whereas on the mountain everything is spread out over
many computers to maximize performance.
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Figure 3: Application and Infrastructure layers of the DECam read-out and control system (SISPI).

We distinguish between Command messages and Telemetry data. Commands are used to request information
from a remote application or to activate a remote action. The Command or Message Passing system is
implemented using a Client-Server design pattern with a thin software layer (PML) on top of PYRO. PML



introduces the concepts of Component and Device and with this a uniform naming scheme for SISPI
applications.

The telemetry system is based on the publish-subscribe design pattern using ideas similar to data distribution
services, an emerging standard for publish-subscribe middleware for distributed systems [6]. Again built upon
the core functionality provided by PYRO, SISPI introduces a concept called Shared Variables. Consisting of
a client stub library and a central server (Shared Variable Engine, SVE) this system allows user applications
to publish information such as a temperature reading or the readout status to a virtual data space. Other
applications can subscribe to information placed in this virtual data space and will receive updates whenever a
publisher submits a new value. Publishing and subscribing to a shared variable are completely decoupled. A
publisher needs no knowledge of who will subscribe to this variable and vice versa. The shared variable
system supports asynchronous callbacks, guaranteed delivery, multiple publishers of the same shared variable
and group subscriptions. Additional options are available but a detailed description of the SVE API is beyond
the scope of this paper. Production versions of the SVE and the PML messaging layer are complete and both
are used for all DECam prototype tests and studies.

3.1 Configuration

Initialization and configuration of a complex distributed system such as SISPI is a multi-step process. SISPI
employs a subversion-based [7] code management and distribution system to support concurrent code
development. We have selected eUPS [8] for installation and version management. eUPS organizes SISPI
applications into products and supports simple command line tools to select specific versions with automatic
configuration of environment variables such as PATH. The eUPS concept of current versions allows the code
manager to define a standard configuration for regular use while software developers can select a specific
version of a product to debug and test new features.

With the software installed it is the job of the Architect, the SISPI configuration system, to load and start the
SISPI processes in the correct order and with the correct arguments. A SISPI configuration is described by an
initialization file like the one shown below. The collection of processes started by the Architect is called a
SISPI Instance. Multiple instances can be run by the same user and on the same computers as long as there
are no hardware conflicts.

image_basename = Image_ ${SISPI_INSTANCE}  umDefine variables, use shell symbols

[Nodes]
[ [cosmos7]] <= Specify which computers (Nodes) run
host = cosmos7.mps.ohio-state.edu which process (Role)

roles = FCS,IB1l,IB2,PSL,CONSOLE,OCS
GUISERVER, SHUTTER, SHUTTERGUI
[ [cosmos6]]
host = cosmosé6.mps.ohio-state.edu
roles = PANA, DHSA # bkpl
[ [cosmos12]]
host = cosmosl2.mps.ohio-state.edu

roles = PANB,DHSB # bkp3
[Roles]

[[PSL]] <emRoles have names. The program is
product = PSL identified by its eUPS product name
application args=-default delay, 3000 <4mm Choose arguments to be passed to role

[ [PANA] ]
product = PanviewHelper
fpaname = decam63_vib2 bkp4 emConfiguration constants can be defined

[ [DHSA]]
product = DHS
im name = %(image_basename) s e=Tnternal variables are resolved

[[ocs]]
product = OCS <m Specific eUPS version of a product
version = 1.4.0 to use
xterm = True emctart process in a separate xterm

xterm args = -icomnic, emSet xterm parameters



The configuration files use standard Windows .ini file notation [9] and the Architect uses the configObj
Python module [10] to parse the configuration file. The example in the text box above shows some of the
options available for SISPI configuration files.
The computers that participate in this instance = T 0]
are specified in the [[Nodes]] section in which

we also list how the application processes
(Roles) are distributed. In the [[Roles]] section
each application is identified by its eUPS
product name. The Architect can pass
command line arguments specified in the .ini
file when it starts an application. Variables are
supported as well as configuration constants | e s
that are passed to the application as a Python
dictionary. The Architect itself consists of a
manager application and architect_node
processes started on each node in the instance
via ssh. A management interface implemented
by the Architect provides full process control.
Individual roles can be stopped and restarted.
With a centralized shutdown command an
entire SISPI instance can be stopped. The
Architect is integrated in the SISPI web-based
user interface system discussed later in this Figure 4: The Architect Console showing the active nodes and
paper. A screen shot of the Architect Console roles. The top.right panel allows user input and the lower

is shown in Figure 4. Development of the Panel on theright shows log messages.

Architect is complete and the SISPI

configuration system is fully operational.
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3.2 Facility Database

The SISPI facility database stores all non-image data that are relevant to the operation of DECam. There are a
number of different types of data that will be stored including camera calibration and configuration
information, telemetry data such as environmental information from the instrument control system, alarm and
error messages, information from the cloud camera, and log messages about all events that take place during
camera operations. Our implementation of the facility database is based on PostgreSQL [11]. PostgreSQL is a
freeware database that is widely used in the Linux community as well as at both NOAO and FNAL. We have
developed a set of routines and libraries written in C++ and in Python using the psycopg2 and sglalchemy
modules [12] that hide SQL and other database details from the application programmer. Database access is
fully integrated with the SISPI Application Framework discussed in the next section. The database will be
located on Cerro Tololo. A tool was developed to provide daily backups to CTIO and Fermilab. The data will
also be made available to DES Data Management.

3.3 Application Framework

The SISPI Application Framework is a Python class that serves as a base class for all SISPI application. It
gives the same basic structure to all applications and brings together all of the SISPI services such as SVE,
PML, Alarms, Logging and configuration management (Architect). The Framework manages all resources
centrally which allows it to unsubscribe all shared variables and to close all PML connections when the



application is about to exit. Proper exit handling is critical for SISPI’s ability to stop and restart individual
processes without the need to end the entire instance. Additional functionality provided by the Application
Framework include a heartbeat that can be used to monitor the overall state of the system and a standardized
management interface with process control functions and access to an application state variable. Interfaces to
the alarm and constants database are also provided by the framework. With the Application Framework we
were able to reduce the complexity of application development significantly.

4. THE IMAGE PIPELINE

Built on top of the infrastructure software, the Observation Control System or OCS is the central component
of SISPI coordinating all aspects of camera operation and the observation sequence. Connected to the OCS is
the tactical observation package (ObsTac) which determines a sequence of pointings for the telescope based
on a number of inputs. A typical DES algorithm would take as inputs: 1) current date and time to compute
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Figure 5: Data Flow architecture of the DECam read-out system

moon position and twilight status, 2) survey status, in the form of fields previously observed, and 3) the
current observing conditions as reported by the cloud camera and other instruments. The algorithm will then
locate candidate tiles from the survey status information, and compute air-masses for the candidates. Given
this information it computes a metric for each candidate and then chooses the best tile to observe. OCS



receives this information and proceeds to take these images unless the sequence is overwritten by the
observer. Besides survey mode (ObsTac) and manual mode the OCS also supports simple scripting of a given
series of exposures and provides standard features such as general purpose dither patterns. Figure 5 shows the
data flow architecture of the DECam read-out system. At the end of an exposure data is read from the CCDs
and digitized using Monsoon based detector head electronics [13]. A detailed description of this system and
of some of the newly developed front end modules for DES can be found in [14]. The front end electronics is
arranged in three crates each with a split backplane to improve system throughput. These CCD readout crates
will be located in the prime focus cage in thermally controlled housings. These housings will maintain the
CCD electronics at a constant temperature to ensure constant gain performance. From the Monsoon crates
image data are transferred to pixel acquisition nodes (PAN) via an optical data link based on the S-Link
specification [15]. At a pixel rate of 250 kpix/s readout of the entire focal plane takes about 17 seconds. Our
readout software (panview) is based on ArcVIEW package developed by M. Bonati at CTI1O [16].

The focal plane is configured such that the data from all 8 focus and alignment CCDs are read by the same
PAN. This processor will analyze the focus images in real time to compute adjustments to the hexapod
support system in order to maintain the best possible image quality. This arrangement simplifies the
architecture and it minimizes the movement of the data, thereby maximizing the time available for processing
before the next image is taken. In order to complete the hexapod motion before the beginning of the next
exposure, any adjustment commands must be issued before 9.5 seconds after the shutter closes. Since it takes
about 8.5 s to readout the 2kx2k alignment CCDs the focus algorithm has to complete in less than 1 second.
We are considering implementing region of interest readout using know star positions to reduce the readout
time. A prototype algorithm has been developed and readout and algorithm timing measurements are
underway. An additional PAN computer is allocated to read the guide CCDs and to execute the guide
algorithm. To provide guide signals to the telescope, the guide CCDs will be operated independently of the
image CCDs by using a separate Monsoon system for their readout. In order to achieve the required update
frequency of the guider correction signals of about 1 Hz the guide CCDs will operate in window or region-of-
interest (ROI) mode which has been successfully tested in our studies with the Multi-CCD Test Vessel at
Fermilab. The guider algorithm itself was tested in a dedicated observing run using a DECam 2kx2k CCD
mounted to the CTIO 1m telescope.

Using high speed Gigabit Ethernet links each PAN sends its data to the Image Builder (IB) system which is
implemented as a processor farm. The data transfer protocol is optimized for performance and instead of
standard TCP/IP sockets we are using netcat [17] to achieve transfer times of less than 10 seconds for the
entire image (1 GB). Throughput is further enhanced by using a memory based filesystem (tmpfs) for
temporary files. We are currently evaluating the use of compression schemes such as FITS tile compression.
Each image builder process, written in Python, receives data from every PAN and when an image is
complete, it assembles the exposure data in a multi-extension FITS format using pyFits. While processing the
image the IB completes the primary FITS header by inserting information such as telescope position, airmass,
filter etc. published by other applications. Before the data is written to disk each image is passed through a
quality insurance process that analyses the image data and determines standard quantities such as sky noise
and seeing. Assuming a multi-core CPU is used for the IB processor farm allowing data 1/O to proceed in
parallel, the available processing time tpro is SIMPlY tproc = texp X N Where tgy is the exposure time and N is the
number of IB nodes. We have estimated that 4-5 nodes will be sufficient for DES but the system can easily be
expanded. The IB nodes are controlled by the Image Builder Supervisor (IBS) which is implemented as part
of the OCS. The IBS maintains a queue of available 1B nodes which is used by the OCS to instruct the PANSs
of where to send the next image data.

Images are stored on raid disks local to each image builder. An Image Directory Service provides a catalog of
available images and provides users and other applications, for example Quick Reduce (discussed below),
with access tools. Once again using netcat or similar tools for the data transfer we obtain significant
performance gains compared to an nsf based system. The NOAO Data Transport System (DTS) is used to



transfer data from the Cerro Tololo mountain-top to the CTIO campus in La Serena via a 155 Mbits/s
microwave link. From there DTS transfer the image data to the DES Data Management system at NCSA at
the University of Illinois.

5. INTRUMENT CONTROL SYSTEM

Hardware monitoring and control of the DECam instrument is the responsibility of the instrument control
system (ICS). Shown schematically in Figure 6, the system can be divided into two parts. Critical systems
such as the liquid nitrogen cooling system and the monitor system for the front end electronics crates are
always on. Fail safe systems are implemented in hardware. Control loops and monitor functions are
programmed in Labview and use programmable automation controllers from National Instruments (a mixture
of Compact RIO and FieldPoint systems). These applications operate stand alone. The only other SISPI
component they use is the DECam database to archive alarm message and telemetry information. A local disk
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Figure 6: The DECam Instrument Control System.

is used should the database is unavailable. No other SISPI services are used. We use Labview web services to
make the expert user interfaces available remotely.

We use a similar model to integrate other mountain top instrumentation. This includes in particular the
radiometric all-sky infrared camera (RASICAM) currently under construction by the DES collaboration [18].
This camera allows real-time quantitative assessment of night sky and determines whether the conditions are
photometric. Via the DECam database this information is made available to ObsTac as an input for the
exposure selection algorithm.



The second part of the instrument control system consists of components that participate more actively in the
image acquisition process such as the shutter and the filter changer mechanism. These applications are started
by the Architect and require other SISPI components to be fully functional. They typically consist of a
network enabled micro controller with the firmware written in C The hardware controller interacts with a
Python process via a TCP/IP socket connection. The DECam shutter developed by the University of Bonn
and the filter changer mechanism built by the University of Michigan [19] have been integrated so far. We
complete these applications as the hardware arrives at Fermilab.

The connection between DECam/SISPI and the Blanco telescope control system [20] is accomplished by the
TCS Interface process shown on the left in Figure 6. While similar in nature the two control systems use
different protocols and the TCS interface supports bi-directional flow of control and status information. It
includes algorithms to convert between the different communication protocols used for the telescope and
DECam.

6. QUALITY ASSURANCE

Continuous monitoring of both the instrument and the image quality is required to control systematic
uncertainties to achieve the science goals of the Dark Energy Survey and to allow continuous, error-free
operation of DECam. Several SISPI components are designed to implement these quality assurance
procedures. Image-Health, a first check of the image quality of every exposure, has already been discussed as
part of the image builder process. In addition, a sample of the
images will be processed on the mountain top with a complete
reconstruction and analysis pipeline that uses algorithms identical or
S l in some cases very similar to the procedures used by the full Data
- Management processing pipeline. This Quick Reduce pipeline is
being developed by DES-Brazil and has already been successfully
rieel tested using simulated images. Quick Reduce consists of a flexible
““““ e framework written in Python that can call a user defined list of
(astronomy) algorithms to process the image. Results are collected
in an internal database and a combination of Matplotlib [21] and the
] Django framework [22] are used to present them graphically in a
Figure 7: Sample output plots from the  \yap hrowser as shown in Figure 7. Quick Reduce will be available
Quick Reduce pipeline. for both survey operations and community observing.
Additional quality assurance tools available to the observer include
a real time display that automatically shows a down-sampled
image of every exposure and the observer workstation. SISPI
will copy every image to the observer workstation where it can
be accessed by standard tools such as ds9 or iraf for an in depth
interactive analysis. The observer can choose to process an
image with his private, customized algorithms. These operations
are completely decoupled from the SISPI image pipeline and do
not affect the overall throughput. We have developed a a
prototype image server interface shown in Figure 8 that assists
the observer in locating the images of interest. In a future version
the observer will be able to select images based on exposure
type, filter etc.
We also continuously check the information provided by the
instrument control system. Instrument-Health is a SISPI
application that monitors the state of the instrument. Deviations
from normal operating conditions cause alarms that will be
logged in the database and displayed on the alarm panel of the

Figure 8: Prototype Image Directory Service



observer console. Instrument-Health publishes select quantities as shared variables to be displayed on the
observer console either as a function of time or as a function of position within the focal plane, where
possible.

7. USER INTERFACE AND OBSERVER CONSOLE

The SISPI GUI architecture follows the Model-View-Controller (MVC) pattern first developed for Smalltalk
but now in common use for large applications [23]. The MVC pattern is based on the realization that all
applications are, essentially, interfaces that manipulate data. For SISPI the controller component is provided
by a GUIserver and standard web browsers are used to render the view. Using a web browser provides many
desirable features such as platform independence, remote access, a large number of 3 party tools, and a
certain level of security. There are, however, some concerns regarding usability and performance in a real
time environment. Recent advances in browser technology have addressed this issue. Thanks to faster
rendering and JavaScript execution as well as new standards such as HTMLS5 and the Web-Socket API that
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Figure 9: The engineering console showing the remaining exposure time and the status of the image pipeline. The
left panel shows messages from the OCS and the lower panel on the right implements a console interface.

allow for advanced functionality such as bidirectional socket communication and 2D drawing contexts, web
browsers are now on a near equal footing with desktop GUI toolkits. The SISPI GUIserver is based on the
Twisted framework. The client side (web browser) code is based on HTML/CSS and JavaScript. We use
SproutCore, a modern JavaScript application framework. A detailed description of the SISPI graphical user
interfaces can be found elsewhere in these proceedings [24].



8. CONCLUSIONS AND OUTLOOK

The Dark Energy Survey Collaboration is building a new powerful CCD camera that will be installed on the
Blanco 4m telescope at CTIO. In this paper we presented the design of the read-out and control system for
this instrument (SISPI). Development of the SISPI infrastructure software is complete. Near production
versions of the image pipeline, the instrument control system, the data quality monitoring software and the
user interfaces are becoming available. Extensive tests will be performed this summer with the full scale
telescope simulator [25] at Fermilab before SISPI will be shipped and installed at CTIO in the new Blanco
control room early in 2011. System integration at CTIO will be complete by the time DECam arrives in Chile
and we will be ready for the start of survey observations with DECam in October 2011.
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