
Abstract

For some computer applications such as shutter control
for Charge-Coupled Devices (CCD) testing for the Dark
Energy Survey (DES), we have developed microsecond
timing and profiling software that runs on standard
Windows2 and Linux based operating systems. This
software is orders of magnitudes better than most of the
standard native functions in wide use.

Our software libraries calibrate RDTSC in microseconds
or seconds to provide two different types of delays: a
“Guaranteed Minimum” and a precision “Long Delay”,
which releases to the kernel. Both return profiling
information of the actual delay.

I. INTRODUCTION

Pentium II2 and subsequent version processors as well as
some AMD2 compatible CPU’s have a 64 bit register that
counts the number of CPU clock cycles, or ticks of the CPU
clock since boot time. This counter can be read with a non-
privileged ring 3 or user mode ReaD Time Stamp Counter,
RDTSC3, instruction with which we have achieved very
consistent timing results on desktop machines. Yes, even at
>= 3 Gigahertz: 1 count =1 tick. Laptops that vary the CPU
clock may not be candidates for these techniques.

We have developed two similar software libraries: one
for Windows1 is callable from C or VBA, Visual Basic for
Applications and Excel1, and another for Linux in C or TCL
via CRITCL4 for Linux.

From C the RDTSC instruction is extremely low overhead
with resolution that increases as a function of the clock to the
CPU. The higher the CPU clock, the greater the resolution:
on a ~1 Gigahertz CPU there will be ~ 1,000 ticks per
microsecond and on ~3 Gigahertz CPU there will be ~3,000
ticks in one microsecond. On the latter machine, RDTSC,

1 This work was done for Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.
2“Windows” Copyright Microsoft and here meaning any of their
operating systems although the scope pictures here were with XP
(all patches at the time of this writing, April 13, 2007). Excel is
Microsoft’s spreadsheet application that incorporates VBA.
“Pentium” is copyright by Intel. AMD is Advanced Micro Devices.
3 http://en.wikipedia.org/wiki/RDTSC
4 CRITC stands for “Compiled Runtime in TCL”. It allows
embedding C code in Tcl and/or compiling a “package” .dll or .so
file. See http://www.equi4.com/starkit/critcl.html. It is similar to
SWIG, Simplified Wrapper and Interface Generator at
http://www.swig.org/. However, CRITCL lends itself to making C
functions directly callable from TCL rather than building TCL
commands via parsing and C case statements.

when put into an inline C function and profiled, takes ~500
clock ticks or less than two tenths of a microsecond. C called
from Visual Basic for Applications, VBA and Excel, may
take ~1.2-1.6 microseconds the first instance and only ~0.8
microseconds during subsequent instances on a 2.1 Gigahertz
machine. TCL calls via CRITCL on Linux are a few tenths
of a microsecond slower than the first instance on a ~3
Gigahertz machine running Linux.

II. OVERVIEW

We are building the Dark Energy Camera (DECam) for
the Dark Energy Survey (DES). For details, see
http:\\www.darkenergysurvey.org. The full focal plane will
require 70 devices plus spares, and we expect to test about
200 CCDs, based on our current yield estimate. The testing
facility is located in the Silicon Detector Laboratory at
Fermilab. (Some testing may be performed by collaborating
institutions). There are several testing stations and each
station has a different CPU clock frequency. Many tests
involve opening and closing a shutter to expose the CCD to a
light source on the opposite side of the shutter. See Fig. 1.

Fig. 1. CCD is in the “Test Cube”. The shutter is the
small (slightly cocked) rectangle to the left of the Cube
and to the right of the “finned” halogen lamp.

 Several other GPIB devices need to be coordinated along
with the shutter. One example scenario is to open the shutter,
wait half the exposure time, read light power via GPIB,
profile how long the GPIB operation took with RDTSC and
then subtract that time from the remaining shutter exposure
time. (We could take out the Tcl calculation time but do
not.) Next we make a socket call to close the shutter, which
we also log, and that is on the order of about a millisecond.

Microsecond Delays on Non-Real Time Operating Systems

R. Angstadt1, J. Estrada1, H.T. Diehl1, B. Flaugher1, M. Johnson1,
1Fermi National Accelerator Laboratory

We are already at least ~100 times better than our
environment as our log files show:

measured_exp_time_secB4SocClose#F=10.0000500391;
measured_exp_time_secB4SocClose#F=10.000048969;
measured_exp_time_secB4SocClose#F=14.0000616151;
……………………………………………………………
measured_exp_time_secB4SocClose#F=90.0000500799;
measured_exp_time_secB4SocClose#F=90.0000299969;
measured_exp_time_secB4SocClose#F=94.0000465351;
measured_exp_time_secB4SocClose#F=94.0000406329;
measured_exp_time_secB4SocClose#F=98.0000456423;
measured_exp_time_secB4SocClose#F=98.0000385692;
measured_exp_time_secB4SocClose#F=100.000043744;
……………………………………………………………
measured_exp_time_secB4SocClose#F=4000.00002996;
……………………………………………………………
measured_exp_time_secB4SocClose#F=4000.00006041;
... and so on.

III. PROFILING

Because of its low latency and high granularity, RDTSC
is very good at profiling. One can use it to profile code
directly without averaging. One must be aware of things like
CPU caching that generally may make the first call longer
than the subsequent (presumably) cache hit call. Also when
doing many successive calls, some may be quite a bit longer
than the rest if the profiled call was preempted. Due to the
high granularity of RDTSC, one must be careful interpreting
the results. If an average time is desired, one must remember
to write explicit code to compute the average.

IV. CALIBRATION

Calibrating the CPU clock in terms of time is essential for
code portability between multiple test stations. We do not
want to maintain thousands of lines of code in terms of clock
ticks on multiple test stations all running with different CPU
clock frequencies. For a cost of a second or two at program
start up we can use the standard slower operating system
time routines to calibrate the RDTSC counter for the machine
we are running on and write our code in terms of seconds
and/or microseconds.

On Linux we can use the accurate5 gettimeofday()
function combined with the usleep() function to calibrate the
CPU frequency. If we are running on a Linux machines
where the gettimeofday() function is synched to a time server

5http://en.wikipedia.org/wiki/System_time claims Unix, POSIX
(Linux) gettimeofday() resolution is 1 microsecond. Also that
Microsft Windows GetSystemTime() is 1 millisecond and that their
GetSystemTimeAsFileTime() is 100 nanoseconds. Although on one
of the author’s XP systems CompuWare’s SoftICE (kernel level)
debugger will cause the system time to loose minutes over the
course of a debugging session. Obviously these must apply to some
sort of “normal” system where no special debugging software is
running.

then our CPU clock frequency will be referenced to that as
well!

V. “GUARANTEED MINIMUM” MICROSECOND
DELAY

With calibration complete, we need work only in seconds
or microseconds. Latency of our timing routine determines
our granularity. E.g., the Linux gettimeofday() function is
reputed to be accurate to a microsecond:

cpu freq= 3048592092 ticks per microsec=3048.2
gettimeofday took = 5.042897 microseconds
gettimeofday took = 3.674242 microseconds
gettimeofday took = 3.619128 microseconds

Note that the first gettimeofday() took a bit longer the
subsequent instances, presumably because it was a CPU
cache miss, while the next two obviously were cache hits.
 However, the above latency cannot compete with
RDTSC:

 RDTSC took = 0.187564 microseconds
Although gettimeofday() is a candidate if we were to poll on
it in a tight loop, we will have 20-30 times worse resolution
than RDTSC.
 So we poll on RDTSC for a calibrated time delay and get at
most ~0.4 microseconds more than what we asked for. We
note that this kernel, Fermi Scientific Linux, apparently does
not preempt. The profiling indicates consistency to within a
microsecond on both sides. On operating systems which
preempt, such as Windows machines, the delay will be as
long as requested, but may also go longer when preemption
occurs. More details are presented later in this note.

 We profile the standard Linux usleep() and compare the
error with that obtained using RDTSC in the figure below.

Fig. 2. Linux usleep() / RDTSC time error as a function
of requested time delay. Ask usleep() for a 1 millisecond
delay results in ~20 milliseconds. With usleep(), the
DAQ rate is limited to ~50 hertz regardless of CPU
clock speed.

For Windows the Sleep() function from winbase.h at
least has their argument in milliseconds.

Fig. 3. Ratio of error for Windows Sleep() vs. RDTSC
as a function of delay. Asking for a 1 millisecond delay
results in ~15 millisecond delay. The DAQ rate is
limited to ~66 hertz regardless of the CPU clock speed.

Clearly if high DAQ rates are desired one wants to use
RDTSC for more precise delays. Certainly not usleep() or
Sleep().

 However, polling RDTSC can pretty well lock up the
machine. In that way polling RDTSC is not the same as
calling the usleep() or Sleep() functions, which release to the
kernel and other tasks. If running Linux, another user may
decide to reboot the machine. This happened to me once
while gathering this data. If on Windows, polling for
RDTSC will also pretty well prevent “surfing” the web or
checking email.

 If we interface this delay code to some hardware that we
can control directly, such as the Parallel Port, we can check
our software on a scope as the next three figures show.
These are all done on Microsoft XP service pack 2 from
Excel via VBA to the Parallel Port.

Fig. 4. Many “Guaranteed Minimum” Parallel Port
Trigger Pulses with 2 microsecond delay. Note, no
pulse ends before the 1st marker.

Fig. 5. Many similar Parallel Port Trigger Pulses with
another microsecond added to the delay (3 μs delay
requested). Note that no pulse ends before the 2nd

marker and that the markers are 1 μs apart.

Fig. 6. If we change the scope time base to 10 μs per
division and repeat the test many times, we see that
preemption sometimes occurs even during our short 4-5
μs pulses on XP. However, RDTSC times reflect this,
so we know for how long we have been preempted. If
we pull the Ethernet cable out we may reduce the
number of premptions but they never entirely go away.

VI. PRECISION “LONG DELAYS” (NOT
GUARANTEED MINIMUM)

With a second round of calibration, we gather profiling
statistics on how long a given release to the kernel takes. For
Windows, a routine like DoEvents in VBA will work. For
Linux, we can use usleep() with some arbitrary time on the
order of a tenth of a second or more. We are interested in the
worst case time this takes and save the results somewhere,
for instance, in a global.

 After this last calibration, our new poll loop will consist
of a coarse loop where we release to the kernel the same
amount as our last calibration, and then dynamically check
how much time remains until we get close to our target time.

When we are within say 0.2 to about 0.5 seconds, we start
the above section’s non-releasing poll on RDTSC. Most
people will tolerate the machine going away for short
periods, but usually not seconds.

 Because this is more code, with more converting to and
from ticks, this routine’s latency is much higher and causes
loss of “microsecond” resolution. We can recover resolution
by adding a tuning argument to subtract out this routine’s
overhead. Thus, we have moved from a “guaranteed
minimum” to an average around a target. This is perfect for
shutter control. After the first caching call, which is usually
~60-100 microseconds too long, and after tuning the delay on
that machine, we can achieve the accuracy shown on the
scope trace in the lower right.

 A last tip is to trap negative polling requests to our
delay routines that use RDTSC to prevent waiting for 64 bits
of ticks (equvalent to ~150-190 years on our ~3 Gigahertz
machine).

Fig. 7. ~10 each “Long Delays “ each at 1.0, 1.2, 1.4 and
1.6 seconds shown at 200 millisecond/ division. From VBA
& Excel to C on XP (service pack 2) out of the Parallel Port.

Fig. 8. End of ten “Long Delays” at 1.000004 seconds
and ten more at 1.000016 seconds as before. This shows the
excellent precision and repeatability. The time base is 4
microseconds per division and the space between markers is
12 microseconds.

The previous figure was obtained in the third try and is
selected for. Nevertheless, it is twenty consecutive pulses
with a delay change of 12 μs, after the first ten, on an
operating system that we know can still preempt. Though
results are not guaranteed, we know when we have been
preempted because the RDTSC time stamp tells us. Similar
results are obtained from profiling delays of from 1 to 60
seconds (and longer if desired, but the tests get tedious.) One
can set the delay and then browse the web and have it come
back within +/- a few microseconds of 60.000000 seconds
inclusive. While CPU utilization can still be high, regardless
of releasing to the kernel, the machine will still respond to
other tasks.

VII. CONCLUSION

Once calibrated, RDTSC provides impressively low
microsecond latency profiling and sub-microsecond timing
granularity available on any Pentium II or above and/or
compatible where the CPU clock is “constant” as on most
desktops. The technique is independent of operating system.
It is only dependent on processor type and compatibility.
Although we have successfully developed software libraries
on Windows and Linux, they could be developed on the
Apple MacIntosh as well. The scope pictures are proof of our
ability to calibrate the RDTSC counter rather well using the
standard slow timing functions.

 After calibration, precision (1 microsecond pictured)
“guaranteed minimum” delays may be made. This delay may
of course be longer due to normal operating system
preemption.

 The “Long Delay” method provides unexpectedly
successful results. The algorithm may be unique or at least
not common. The margin of error does not increase as a
function of the delay time because any preemption, except in
the last few microseconds, is accounted for. And we always
know the returned time delay regardless of preemption.

 Delay routines return profiling so the caller may redo
measurements if desired. The times agree well with scope
traces. These techniques are obviously only applicable in
non-life threatening applications. They also depend on a
stable CPU clock so they may not be applicable to lap tops.

REFERENCES
[1] A lot of information about DES:

https://www.darkenergysurvey.org/
[2] R. Angstadt, F. Borcherding, M.E. Johnson (Fermilab),

L. Moreira (Rio de Janeiro CBPF). “Using Modern
Software Tools to Design, simulate and Test a Level 1
Trigger Sub-System for the DZero Detector”. Presented
at the 9th Conference on Real-Time Computer
Applications in Nuclear, Particle and Plasma Physics
(RT 95), East Lansing, MI, 22-25 May 1995. IEEE
Trans.Nucl.Sci.43:61-64,1996.

[3] Steve Landers, Jean-Claude Wippler, “CriTcl – Beyond
Stubs and compilers”,

 http://www.digital-smarties.com/Tcl2002/critcl.pdf

[4] Jean-Claude Wippler, “Critcl lets you easily embed C
code in Tcl”

 http://www.equi4.com/starkit/critcl.html
[5] Dale Roberts, “DIRECT PORT I/O AND WINDOWS

NT” Dr. Dobb’s Journal (DDJ), May 1996.
 ftp://66.77.27.238/sourcecode/ddj/1996/9605.zip
 (This source code can get to the Parallel Port directly

using inp and outp from c with giveio.sys).
 [6] R. Angstadt, “Installing (my SBS (formerly Bit3 Model

616,617,618,620 driver files on Windows NT &
Windows 2K” (more on giveio.sys)
http://d0server1.fnal.gov/users/angstadt/www/b3/b3_61x
.htm

 [7] Information on the parallel port abounds on the web & is
too numerous to mention. Google “parallel port pinout”.
See for instance,
http://www.technick.net/public/code/cp_dpage.php?aioc
p_dp=pinconpar_epp

 [8] RDTSC also abounds on the web. A good one is
 http://en.wikipedia.org/wiki/RDTSC
 [9] Electronic Engineering Times CMP Publication, March

13,1995 Issue 839, pp. 1.
[10] Microsoft Excel 97 Developer’s Kit, Microsoft Press

(this is a book with a CD.) Microsoft, 1997.

